Quantum machine learning for electronic structure calculations

被引:125
作者
Xia, Rongxin [1 ]
Kais, Sabre [1 ,2 ,3 ,4 ]
机构
[1] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
关键词
SMALL MOLECULES; COMPUTATION; CHEMISTRY;
D O I
10.1038/s41467-018-06598-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Considering recent advancements and successes in the development of efficient quantum algorithms for electronic structure calculations-alongside impressive results using machine learning techniques for computation-hybridizing quantum computing with machine learning for the intent of performing electronic structure calculations is a natural progression. Here we report a hybrid quantum algorithm employing a restricted Boltzmann machine to obtain accurate molecular potential energy surfaces. By exploiting a quantum algorithm to help optimize the underlying objective function, we obtained an efficient procedure for the calculation of the electronic ground state energy for a small molecule system. Our approach achieves high accuracy for the ground state energy for H-2, LiH, H2O at a specific location on its potential energy surface with a finite basis set. With the future availability of larger-scale quantum computers, quantum machine learning techniques are set to become powerful tools to obtain accurate values for electronic structures.
引用
收藏
页数:6
相关论文
共 44 条
[1]  
[Anonymous], 2008, PREPRINT
[2]   Machine learning for many-body physics: The case of the Anderson impurity model [J].
Arsenault, Louis-Francois ;
Lopez-Bezanilla, Alejandro ;
von Lilienfeld, O. Anatole ;
Millis, Andrew J. .
PHYSICAL REVIEW B, 2014, 90 (15)
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]   Adiabatic Quantum Simulation of Quantum Chemistry [J].
Babbush, Ryan ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
SCIENTIFIC REPORTS, 2014, 4
[5]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[6]  
Bian T., 2018, PREPRINT
[7]   970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13 [J].
Blum, Lorenz C. ;
Reymond, Jean-Louis .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) :8732-+
[8]   Bypassing the Kohn-Sham equations with machine learning [J].
Brockherde, Felix ;
Vogt, Leslie ;
Li, Li ;
Tuckerman, Mark E. ;
Burke, Kieron ;
Mueller, Klaus-Robert .
NATURE COMMUNICATIONS, 2017, 8
[9]   Machine learning quantum phases of matter beyond the fermion sign problem [J].
Broecker, Peter ;
Carrasquilla, Juan ;
Melko, Roger G. ;
Trebst, Simon .
SCIENTIFIC REPORTS, 2017, 7
[10]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605