ON CATEGORICITY SPECTRA FOR LOCALLY FINITE GRAPHS

被引:0
|
作者
Bazhenov, N. A. [1 ]
Marchuk, M., I [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
computable categoricity; autostability; degree of categoricity; categoricity spectrum; computable model; locally finite graph;
D O I
10.1134/S0037446621050037; 10.1134/S0081543811060071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under study is the algorithmic complexity of isomorphisms between computable copies of locally finite graphs G (undirected graphs whose every vertex has finite degree). We obtain the following results: If G has only finitely many components then G is d-computably categorical for every Turing degree d from the class PA(0'). If G has infinitely many components then G is 0 ''-computably categorical. We exhibit a series of examples showing that the obtained bounds are sharp.
引用
收藏
页码:796 / 804
页数:9
相关论文
共 50 条
  • [21] Approximately uniformly locally finite graphs
    Manuilov, V
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 : 146 - 155
  • [22] SOBOLEV SPACES ON LOCALLY FINITE GRAPHS
    Shao, Mengqiu
    Yang, Yunyan
    Zhao, Liang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 693 - 708
  • [23] THE CONNECTIVITIES OF LOCALLY FINITE PRIMITIVE GRAPHS
    JUNG, HA
    WATKINS, ME
    COMBINATORICA, 1989, 9 (03) : 261 - 267
  • [24] DECOMPOSING ENDS OF LOCALLY FINITE GRAPHS
    JUNG, HA
    NIEMEYER, P
    MATHEMATISCHE NACHRICHTEN, 1995, 174 : 185 - 202
  • [25] Calculus of variations on locally finite graphs
    Yong Lin
    Yunyan Yang
    Revista Matemática Complutense, 2022, 35 : 791 - 813
  • [26] AUTOMORPHISMS OF INFINITE, LOCALLY FINITE GRAPHS
    HALIN, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A32 - &
  • [27] Transitive, Locally Finite Median Graphs with Finite Blocks
    Wilfried Imrich
    Sandi Klavžar
    Graphs and Combinatorics, 2009, 25 : 81 - 90
  • [28] Transitive, Locally Finite Median Graphs with Finite Blocks
    Imrich, Wilfried
    Klavzar, Sandi
    GRAPHS AND COMBINATORICS, 2009, 25 (01) : 81 - 90
  • [29] Categoricity Spectra of Computable Structures
    Bazhenov N.A.
    Journal of Mathematical Sciences, 2021, 256 (1) : 34 - 50
  • [30] Categoricity Spectra for Rigid Structures
    Fokina, Ekaterina
    Frolov, Andrey
    Kalimullin, Iskander
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2016, 57 (01) : 45 - 57