Weighted L2-norms of Gegenbauer polynomials

被引:0
作者
Brauchart, Johann S. [1 ]
Grabner, Peter J. [1 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Gegenbauer polynomials; Hypergeometric functions; Asymptotic analysis; LEGENDRE FUNCTIONS; POWERS;
D O I
10.1007/s00010-022-00871-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study integrals of the form integral(1)(-1) (C-n((lambda)) (x))(2) (1-x)(alpha) (1+x)(beta) dx, where C-n((lambda)) denotes the Gegenbauer-polynomial of index lambda > 0 and alpha, beta > -1. We give exact formulas for the integrals and their generating functions, and obtain asymptotic formulas as n ->infinity.
引用
收藏
页码:741 / 762
页数:22
相关论文
共 30 条
[21]  
Paris R., 2001, ENCY MATH ITS APPL, VVolume 85, DOI 10.1017/CBO9780511546662
[22]   EVALUATION OF INTEGRALS INVOLVING POWERS OF (1-X2) AND 2 ASSOCIATED LEGENDRE FUNCTIONS OR GEGENBAUER POLYNOMIALS [J].
RASHID, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13) :2505-2512
[23]  
RISC, COMP ALG COMB
[24]  
SAMADDAR SN, 1974, MATH COMPUT, V28, P257
[25]   Linearization and connection formulae involving squares of Gegenbauer polynomials [J].
Sánchez-Ruiz, J .
APPLIED MATHEMATICS LETTERS, 2001, 14 (03) :261-267
[26]   Stolarsky's invariance principle for projective spaces [J].
Skriganov, M. M. .
JOURNAL OF COMPLEXITY, 2020, 56
[27]  
Skriganov M.M., 2019, STOLARSKYS INVARIANC
[28]   SUMS OF DISTANCES BETWEEN POINTS ON A SPHERE .2. [J].
STOLARSKY, KB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 41 (02) :575-582
[29]  
Szeg G., 1939, Orthogonal Polynomials, V23