Weighted L2-norms of Gegenbauer polynomials

被引:0
作者
Brauchart, Johann S. [1 ]
Grabner, Peter J. [1 ]
机构
[1] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Gegenbauer polynomials; Hypergeometric functions; Asymptotic analysis; LEGENDRE FUNCTIONS; POWERS;
D O I
10.1007/s00010-022-00871-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study integrals of the form integral(1)(-1) (C-n((lambda)) (x))(2) (1-x)(alpha) (1+x)(beta) dx, where C-n((lambda)) denotes the Gegenbauer-polynomial of index lambda > 0 and alpha, beta > -1. We give exact formulas for the integrals and their generating functions, and obtain asymptotic formulas as n ->infinity.
引用
收藏
页码:741 / 762
页数:22
相关论文
共 30 条
[1]   The spherical ensemble and uniform distribution of points on the sphere [J].
Alishahi, Kasra ;
Zamani, Mohammadsadegh .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-27
[2]  
Andrews G.E., 1999, ENCY MATH ITS APPL, V71
[3]  
[Anonymous], 1878, J MATH PURES APPL
[4]  
Beltrán C, 2020, CONSTR APPROX, V52, P283, DOI 10.1007/s00365-020-09506-1
[5]   Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres [J].
Beltran, Carlos ;
Marzo, Jordi ;
Ortega-Cerda, Joaquim .
JOURNAL OF COMPLEXITY, 2016, 37 :76-109
[6]  
Borodachov S.V., 2019, DISCRETE ENERGY RECT, DOI [DOI 10.1007/978-0-387-84808-2, 10.1007/978-0-387-84808-2]
[7]   Hyperuniform point sets on the sphere: probabilistic aspects [J].
Brauchart, Johann S. ;
Grabner, Peter J. ;
Kusner, Woeden ;
Ziefle, Jonas .
MONATSHEFTE FUR MATHEMATIK, 2020, 192 (04) :763-781
[8]   A QUANTITATIVE CENTRAL LIMIT THEOREM FOR THE EULER-POINCARE CHARACTERISTIC OF RANDOM SPHERICAL EIGENFUNCTIONS [J].
Cammarota, Valentina ;
Marinucci, Domenico .
ANNALS OF PROBABILITY, 2018, 46 (06) :3188-3228
[9]  
Darboux G., 1878, J. Math. Pures Appl, V4, P5
[10]  
De Bruijn NG., 1958, ASYMPTOTIC METHODS A