Nanonization of g-C3N4 with the assistance of activated carbon for improved visible light photocatalysis

被引:88
作者
Chen, Xiaoyun [1 ,2 ]
Kuo, Dong-Hau [1 ]
Lu, Dongfang [3 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mat Sci & Engn, Taipei 10607, Taiwan
[2] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350002, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Landscape Architecture, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPOSITE PHOTOCATALYST; HYDROGEN-PRODUCTION; FACILE SYNTHESIS; NITRIDE; CATALYST; NANOSHEETS; MELAMINE; BENZENE; HETEROJUNCTIONS; PHOTOREACTIVITY;
D O I
10.1039/c6ra10357j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A visible light-driven g-C3N4/activated carbon composite photocatalyst (g-C3N4/AC) was prepared by a polymerization reaction of melamine and activated carbon. The photocatalytic activity of g-C3N4/AC was investigated by the degradation of phenol under visible light and sunlight irradiation. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) emission spectroscopy, Fourier transform infrared spectroscopy ( FTIR), and N-2 adsorption-desorption isotherms were used for catalyst characterization. The results showed that g-C3N4/AC with 8 wt% AC had the best photocatalytic activity under visible light and sunlight irradiation. The mesoporous AC composite enables g-C3N4 to have a uniform particle distribution, less particle aggregation, and an increased specific surface area. A mechanism for the g-C3N4/AC photocatalyst was proposed, and the good efficiency for photodegradation was attributed to the increased surface area of the AC composite and decreased aggregation of g-C3N4, which facilitated the separation of photo-excited electron-hole pairs, and the strong adsorption capability of activated carbon, which accelerated the pollutant transfer rate and accumulation. Therefore, g-C3N4 can easily execute photocatalytic degradation in a pollutant-rich environment.
引用
收藏
页码:66814 / 66821
页数:8
相关论文
共 55 条
[1]   Solvothermal synthesis of the special shape (deformable) hollow g-C3N4 nanospheres [J].
Bai, Xinjiao ;
Li, Jie ;
Cao, Chuanbao ;
Hussain, Sajad .
MATERIALS LETTERS, 2011, 65 (07) :1101-1104
[2]   Synthesis of Monodisperse TiO2-Paraffin Core-Shell Nanoparticles for Improved Dielectric Properties [J].
Balasubramanian, Balamurugan ;
Kraemer, Kristin L. ;
Reding, Nicholas A. ;
Skomski, Ralph ;
Ducharme, Stephen ;
Sellmyer, David J. .
ACS NANO, 2010, 4 (04) :1893-1900
[3]   ACIDITY OF CATALYST SURFACES .2. AMINE TITRATION USING HAMMETT INDICATORS [J].
BENESI, HA .
JOURNAL OF PHYSICAL CHEMISTRY, 1957, 61 (07) :970-973
[4]   Characterization and activity of TiO2/wAC composite photocatalyst prepared by acid catalyzed hydrolysis method [J].
Chen Xiao-Yun ;
Liu Shou-Xin ;
Chen Xi ;
Sun Cheng-Lin .
ACTA PHYSICO-CHIMICA SINICA, 2006, 22 (05) :517-522
[5]   Preparation and Properties of N-F Co-Doped TiO2 Photocatalyst with Wide Range Light Response and Multipore Structure from Ionic Liquid-Water Mixture Solvent [J].
Chen Xiao-Yun ;
Lu Dong-Fang ;
Huang Jin-Feng ;
Lu Yan-Feng ;
Zheng Jian-Qiang .
ACTA PHYSICO-CHIMICA SINICA, 2012, 28 (01) :161-169
[6]   Synthesis and Properties of Mesoporous TiO2 Using Nano-cellulose Template Prepared by Alkali Method [J].
Chen Xiaoyun ;
Chen Xing ;
Hong Shiwei ;
Chen Xiao ;
Huang Biao .
CHINESE JOURNAL OF CATALYSIS, 2011, 32 (11) :1762-1767
[7]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[8]   Origin of the enhanced visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production [J].
Chen, Yilin ;
Li, Jianghua ;
Hong, Zhenhua ;
Shen, Biao ;
Lin, Bizhou ;
Gao, Bifen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (17) :8106-8113
[9]   Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors [J].
Cui, Yanjuan ;
Huang, Jianhui ;
Fu, Xianzhi ;
Wang, Xinchen .
CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (07) :1396-1402
[10]   Synthesis of graphitic carbon nitride by reaction of melamine and uric acid [J].
Dante, Roberto C. ;
Martin-Ramos, Pablo ;
Correa-Guimaraes, Adriana ;
Martin-Gil, Jesus .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (03) :1094-1102