Menger remainders of topological groups

被引:7
作者
Bella, Angelo [1 ]
Tokgoz, Secil [2 ]
Zdomskyy, Lyubomyr [3 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, Viale A Doria 6, I-95125 Catania, Italy
[2] Hacettepe Univ, Dept Math, Fac Sci, TR-06800 Beytepe, Turkey
[3] Univ Vienna, Kurt Godel Res Ctr Math Log, Wahringer Str 25, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Remainder; Topological group; Menger space; Hurewicz space; Scheepers space; Ultrafilter; Forcing; COMBINATORICS;
D O I
10.1007/s00153-016-0493-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss what kind of constrains combinatorial covering properties of Menger, Scheepers, and Hurewicz impose on remainders of topological groups. For instance, we show that such a remainder is Hurewicz if and only it is -compact. Also, the existence of a Scheepers non--compact remainder of a topological group follows from CH and yields a P-point, and hence is independent of ZFC. We also make an attempt to prove a dichotomy for the Menger property of remainders of topological groups in the style of Arhangel'skii.
引用
收藏
页码:767 / 784
页数:18
相关论文
共 28 条
[1]  
Arhangel'skii A., 1986, DOKL AKAD NAUK SSSR, V287, P525
[2]  
Arhangel'skii AV, 2008, COMMENT MATH UNIV CA, V49, P119
[3]  
Arhangel'skii A, 2009, COMMENT MATH UNIV CA, V50, P273
[4]  
Arhangelskii A.V., 2014, Recent Progress in General Topology, VIII, P1
[5]  
Arhangelskii A.V., 2008, ATLANTIS STUD MATH, V1
[6]   When is a space Menger at infinity? [J].
Aurichi, Leandro F. ;
Bella, Angelo .
APPLIED GENERAL TOPOLOGY, 2015, 16 (01) :75-80
[7]  
Aurichi LF, 2010, TOPOL P, V36, P107
[8]  
Banakh T., 2006, QUAD MAT, V18, P1
[9]   ON STRONG P-POINTS [J].
Blass, Andreas ;
Hrusak, Michael ;
Verner, Jonathan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) :2875-2883
[10]  
CANJAR RM, 1988, P AM MATH SOC, V104, P1239