3D Plastronics Radio Frequency Energy Harvester on Stereolithography Parts

被引:4
作者
Nguyen, Xuan Viet Linh [1 ]
Gerges, Tony [1 ]
Duchamp, Jean-Marc [2 ]
Benech, Philippe
Verdier, Jacques [1 ]
Lombard, Philippe [1 ]
Cabrera, Michel [1 ]
Allard, Bruno [1 ]
机构
[1] Univ Lyon1, Univ Lyon, INSA Lyon, CNRS,Ampere UMR5505,Cent Lyon, F-69621 Villeurbanne, France
[2] Univ Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 21 Ave Martyrs,CS 90624, F-38031 Grenoble, France
来源
2022 WIRELESS POWER WEEK (WPW) | 2022年
关键词
Radio Frequency; Energy Harvesting; 3D Plastronics; Additive Manufacturing; Stereolithography; Omnidirectional; Pattern; Circular Polarization; Rectifier; Power Management Circuit; Integrated Circuit; Capacitive Interposer; POWER; RF;
D O I
10.1109/WPW54272.2022.9854010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper discusses the design of a Radio Frequency (RF) energy harvester working at 2.45 GHz in relation with an emerging fabrication technique, 3D Plastronics. The design consists of an omni-directional circularly polarized system of four antennas with high self-isolation, a multi-port rectifier and a power management circuit (PMC). The RF circuits are obtained using an electroless metallization of the surface of a 3D substrate fabricated using stereolithography, a method of additive manufacturing. The electromagnetic properties of the substrate are characterized over a band of 0.5-2.5 GHz applying the two transmission lines method. The prototype of rectifier and PMC are experimented with discrete components for the verification of operation. The results indicate a global efficiency of 14.7% at an input power of -13.5 dBm on each rectifier's input. The performance of the prototype will be improved using a new version of PMC with a specially designed Integrated Circuit of active components and a Capacitive Interposer ( target of 5% of efficiency at -25 dBm input power of the PMC).
引用
收藏
页码:156 / 161
页数:6
相关论文
共 15 条
[1]   A Flexible 2.45-GHz Power Harvesting Wristband With Net System Output From-24.3 dBm of RF Power [J].
Adami, Salah-Eddine ;
Proynov, Plamen ;
Hilton, Geoffrey S. ;
Yang, Guang ;
Zhang, Chunhong ;
Zhu, Dibin ;
Li, Yi ;
Beeby, Steve P. ;
Craddock, Ian J. ;
Stark, Bernard H. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (01) :380-395
[2]  
Adami Salah-Eddine, 2013, THESIS ECOLE CENTRAL
[3]  
[Anonymous], 2021, 78 MILLION BATTERIES
[4]  
Balanis C. A., 2016, ANTENNA THEORY ANAL
[5]  
Capitaine Armane, 2017, THESIS INSA LYON
[6]   A Compact Source-Load Agnostic Flexible Rectenna Topology for IoT Devices [J].
Eid, Aline ;
Hester, Jimmy G. D. ;
Costantine, Joseph ;
Tawk, Youssef ;
Ramadan, Ali H. ;
Tentzeris, Manos M. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (04) :2621-2629
[7]  
Gao S., 2014, CIRCULARLY POLARIZED, P1
[8]  
Gerges T, 2021, EUR CONF POW ELECTR
[9]   Dynamic Ambient RF Energy Density Measurements of Montreal for Battery-Free IoT Sensor Network Planning [J].
Gu, Xiaoqiang ;
Grauwin, Louis ;
Dousset, David ;
Hemour, Simon ;
Wu, Ke .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (17) :13209-13221
[10]   Towards Low-Power High-Efficiency RF and Microwave Energy Harvesting [J].
Hemour, Simon ;
Zhao, Yangping ;
Lorenz, Carlos Henrique Petzl ;
Houssameddine, Dimitri ;
Gui, Yongsheng ;
Hu, Can-Ming ;
Wu, Ke .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (04) :965-976