Electrochemical Activated Nitrogen-doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution Reactions

被引:5
|
作者
Liang, Cheng-lu [1 ]
Ye, Ni-ni [1 ]
Li, Jia-li [1 ]
Li, Xing-qiu [1 ]
Lei, Shuai [1 ]
Huang, Yuan-peng [1 ]
Wu, Jing-jie [2 ]
Liu, Yang [1 ]
Yang, Wei [3 ]
机构
[1] Fujian Univ Technol, Dept Mat Sci & Engn, Ctr Adv Energy & Funct Mat, Fuzhou 350118, Peoples R China
[2] Univ Cincinnati, Dept Chem & Environm Engn, Cincinnati, OH 45221 USA
[3] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon sphere; electrochemical activation; hydrophilicity; hydrogen evolution reaction; nitrogen-doped carbon; CATALYSTS; NANOPARTICLES; NANOSHEETS; PERFORMANCE; GRAPHENE; COBALT; NANOTUBES; SULFUR;
D O I
10.1002/cnma.202200165
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen-doped carbon materials play an important role in the electrolysis of water due to their low cost and high stability. The major roles of N-doped carbon materials in water electrolysis are electrocatalysts or catalyst support for metal-based catalysts. However, the evolution of structures and performances of N-doped carbon catalysts/support during electrochemical hydrogen evolution reactions (HER) process has been seldom reported. Here, we found that the catalytic activities of N-doped carbon were electrochemically activated during the in-situ HER process. After electrochemical activation, the catalytic activities of the nitrogen-doped carbon towards HER were drastically improved and even approached the state-of-the-art Pt/C catalyst. The examination of activation conditions and correlation with the catalytical performances demonstrated that the emerged pyridine N-oxide structure was responsible for the enhanced catalytic performances. The reconstruction of surface chemical structures near the active sites during activation results in the enhanced surface hydrophilicity, which in turn makes the active sites more accessible by the protons. As a result, the catalytic HER performances were drastically improved in the activated catalysts.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Molybdenum carbide nanoparticles supported on nitrogen-doped carbon as efficient electrocatalysts for hydrogen evolution reaction
    Tao, Yuanhua
    Wang, Xueguang
    Yue, Shengnan
    Li, Fei
    Huang, Haigen
    Lu, Xionggang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 842 : 89 - 97
  • [2] Heterostructural Co||Cu Coated with Nitrogen-Doped Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction and Hydrogen Evolution Reaction
    Cai, Jiannan
    Zhang, Xiaofeng
    Shi, Yuande
    Ye, Yanzhu
    Lin, Shen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (18): : 5986 - 5997
  • [3] PtNi Alloy Coated in Porous Nitrogen-Doped Carbon as Highly Efficient Catalysts for Hydrogen Evolution Reactions
    Song, Xuyan
    He, Yunlu
    Wang, Bo
    Peng, Sanwen
    Tong, Lin
    Liu, Qiang
    Yu, Jun
    Tang, Haolin
    MOLECULES, 2022, 27 (02):
  • [4] Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction
    Xu, You
    Yin, Shuli
    Li, Chunjie
    Deng, Kai
    Xue, Hairong
    Li, Xiaonian
    Wang, Hongjing
    Wang, Liang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (04) : 1376 - 1381
  • [5] Hierarchically interconnected nitrogen-doped carbon nanosheets for an efficient hydrogen evolution reaction
    Wang, Hao
    Yi, Qinghua
    Gao, Lijun
    Gao, Yongqian
    Liu, Tingting
    Jiang, Ying-Bing
    Sun, Yinghui
    Zou, Guifu
    NANOSCALE, 2017, 9 (42) : 16342 - 16348
  • [6] Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution
    Zhang, J.
    Liu, P.
    Wang, G.
    Zhang, P. P.
    Zhuang, X. D.
    Chen, M. W.
    Weidinger, I. M.
    Feng, X. L.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (48) : 25314 - 25318
  • [7] Highly dispersed platinum deposited on nitrogen-doped vertical graphene array for efficient electrochemical hydrogen evolution
    Yang, Hongzhou
    Yang, Zhaojun
    Han, Zhaojun
    Chu, Dewei
    Chen, Chaoqiu
    Xie, Xiaoying
    Shang, Lu
    Zhang, Tierui
    2D MATERIALS, 2022, 9 (04)
  • [8] Zeolite imidazolate framework-8 derived molybdenum carbide/nitrogen-doped carbon for highly-efficient hydrogen evolution reaction
    Zhao, Xinran
    He, Xiaobo
    Yin, Fengxiang
    Chen, Biaohua
    Li, Guoru
    Yin, Huaqiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (31) : 15483 - 15494
  • [9] CoxNiyP embedded in nitrogen-doped porous carbon on Ni foam for efficient hydrogen evolution
    Du, Yue
    Pan, Guangxing
    Wang, Li
    Song, Yonghai
    APPLIED SURFACE SCIENCE, 2019, 469 : 61 - 67
  • [10] NiRu nanoparticles encapsulated in a nitrogen-doped carbon matrix as a highly efficient electrocatalyst for the hydrogen evolution reaction
    Xu, Shikai
    Li, Zhiqiang
    Chu, Kainian
    Yao, Ge
    Xu, Yang
    Niu, Ping
    Zheng, Fangcai
    DALTON TRANSACTIONS, 2020, 49 (39) : 13647 - 13654