Grobner bases for families of affine or projective schemes

被引:20
|
作者
Wibmer, Michael [1 ]
机构
[1] Univ Innsbruck, Inst Math, Innsbruck, Austria
基金
奥地利科学基金会;
关键词
comprehensive Grobner basis; Grobner cover; canonical decomposition; parametric polynomial system;
D O I
10.1016/j.jsc.2007.05.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let I be an ideal of the polynomial ring A[x] = A[x(1),...,x(n)] over the commutative, Noetherian ring A. Geometrically, I defines a family of affine schemes, parameterized by Spec(A): For p is an element of Spec(A), the fibre over p is the closed subscheme of the affine space over the residue field k(p), which is determined by the extension of I under the canonical map sigma p : A[x] --> k(p)[x]. If I is homogeneous, there is an analogous projective setting, but again the ideal defining the fibre is <sigma(p)(I)> For a chosen term order, this ideal has a unique reduced Grobner basis which is known to contain considerable geometric information about the fibre. We Study the behavior of this basis for varying p and prove the existence of a canonical decomposition of the base space Spec(A) into finitely many, locally closed subsets over which the reduced Grobner bases of the fibres can be parametrized in a suitable way. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:803 / 834
页数:32
相关论文
共 50 条
  • [41] CONSTRUCTING UNIVERSAL GROBNER BASES
    WEISPFENNING, V
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 356 : 408 - 417
  • [42] Operadic Grobner Bases: An Implementation
    Dotsenko, Vladimir
    Vejdemo-Johansson, Mikael
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 249 - +
  • [43] Grobner Bases for Increasing Sequences
    Hegedus, Gabor
    Ronyai, Lajos
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):
  • [44] Grobner bases of contraction ideals
    Shibuta, Takafumi
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (01) : 1 - 19
  • [45] Grobner bases of balanced polyominoes
    Herzog, Juergen
    Qureshi, Ayesha Asloob
    Shikama, Akihiro
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (07) : 775 - 783
  • [46] POLYNOMIAL DIVISION AND GROBNER BASES
    Zeada, Samira
    TEACHING OF MATHEMATICS, 2013, 16 (01): : 22 - 28
  • [47] Grobner bases for coloured operads
    Kharitonov, Vladislav
    Khoroshkin, Anton
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (01) : 203 - 241
  • [48] GROBNER BASES AND DIFFERENTIAL ALGEBRA
    FERRO, GC
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 356 : 129 - 140
  • [49] Generalised confounding with Grobner bases
    Pistone, G
    Wynn, HP
    BIOMETRIKA, 1996, 83 (03) : 653 - 666
  • [50] Grobner Bases for Fusion Products
    Flake, Johannes
    Fourier, Ghislain
    Levandovskyy, Viktor
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (05) : 2235 - 2253