Grobner bases for families of affine or projective schemes

被引:20
|
作者
Wibmer, Michael [1 ]
机构
[1] Univ Innsbruck, Inst Math, Innsbruck, Austria
基金
奥地利科学基金会;
关键词
comprehensive Grobner basis; Grobner cover; canonical decomposition; parametric polynomial system;
D O I
10.1016/j.jsc.2007.05.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let I be an ideal of the polynomial ring A[x] = A[x(1),...,x(n)] over the commutative, Noetherian ring A. Geometrically, I defines a family of affine schemes, parameterized by Spec(A): For p is an element of Spec(A), the fibre over p is the closed subscheme of the affine space over the residue field k(p), which is determined by the extension of I under the canonical map sigma p : A[x] --> k(p)[x]. If I is homogeneous, there is an analogous projective setting, but again the ideal defining the fibre is <sigma(p)(I)> For a chosen term order, this ideal has a unique reduced Grobner basis which is known to contain considerable geometric information about the fibre. We Study the behavior of this basis for varying p and prove the existence of a canonical decomposition of the base space Spec(A) into finitely many, locally closed subsets over which the reduced Grobner bases of the fibres can be parametrized in a suitable way. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:803 / 834
页数:32
相关论文
共 50 条
  • [31] Dynamical Grobner Bases
    Yengui, Ihsen
    CONSTRUCTIVE COMMUTATIVE ALGEBRA: PROJECTIVE MODULES OVER POLYNOMIAL RINGS AND DYNAMICAL GROBNER BASES, 2015, 2138 : 105 - 171
  • [32] Symideal Grobner bases
    Gobel, M
    REWRITING TECHNIQUES AND APPLICATIONS, 1996, 1103 : 48 - 62
  • [33] Constructive Commutative Algebra Projective Modules Over Polynomial Rings and Dynamical Grobner Bases Introduction
    Yengui, Ihsen
    CONSTRUCTIVE COMMUTATIVE ALGEBRA: PROJECTIVE MODULES OVER POLYNOMIAL RINGS AND DYNAMICAL GROBNER BASES, 2015, 2138 : 1 - +
  • [34] Rewriting as a Special Case of Noncommutative Grobner Bases Theory for the Affine Weyl Group ((A)over tilden)
    Cevik, A. Sinan
    Oezel, Cenap
    Karpuz, Eylem G.
    RING AND MODULE THEORY, 2010, : 73 - +
  • [35] Grobner bases, H-bases and interpolation
    Sauer, T
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) : 2293 - 2308
  • [36] Grobner bases for syzygy modules of border bases
    Kreuzer, Martin
    Kriegl, Markus
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (06)
  • [37] On parallel computation of Grobner bases
    Leykin, A
    2004 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, PROCEEDINGS, 2004, : 160 - 164
  • [38] Grobner bases and wavelet design
    Lebrun, J
    Selesnick, I
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (02) : 227 - 259
  • [39] Converting bases with the Grobner walk
    Collart, S
    Kalkbrener, M
    Mall, D
    JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 465 - 469
  • [40] Computing inhomogeneous Grobner bases
    Bigatti, A. M.
    Caboara, M.
    Robbiano, L.
    JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (05) : 498 - 510