Grobner bases for families of affine or projective schemes

被引:20
|
作者
Wibmer, Michael [1 ]
机构
[1] Univ Innsbruck, Inst Math, Innsbruck, Austria
基金
奥地利科学基金会;
关键词
comprehensive Grobner basis; Grobner cover; canonical decomposition; parametric polynomial system;
D O I
10.1016/j.jsc.2007.05.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let I be an ideal of the polynomial ring A[x] = A[x(1),...,x(n)] over the commutative, Noetherian ring A. Geometrically, I defines a family of affine schemes, parameterized by Spec(A): For p is an element of Spec(A), the fibre over p is the closed subscheme of the affine space over the residue field k(p), which is determined by the extension of I under the canonical map sigma p : A[x] --> k(p)[x]. If I is homogeneous, there is an analogous projective setting, but again the ideal defining the fibre is <sigma(p)(I)> For a chosen term order, this ideal has a unique reduced Grobner basis which is known to contain considerable geometric information about the fibre. We Study the behavior of this basis for varying p and prove the existence of a canonical decomposition of the base space Spec(A) into finitely many, locally closed subsets over which the reduced Grobner bases of the fibres can be parametrized in a suitable way. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:803 / 834
页数:32
相关论文
共 50 条
  • [21] STABILITY OF GROBNER BASES
    SCHWARTZ, N
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1988, 53 (1-2) : 171 - 186
  • [22] GROBNER BASES - AN INTRODUCTION
    BUCHBERGER, B
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 623 : 378 - 379
  • [23] Regular Grobner bases
    Månsson, J
    Nordbeck, P
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (02) : 163 - 181
  • [24] Replications with Grobner bases
    Cohen, AM
    Di Bucchianico, A
    Riccomagno, E
    MODA6 ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2001, : 37 - 44
  • [25] Grobner bases and standard monomial bases
    Gonciulea, N
    Lakshmibai, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 255 - 260
  • [26] An introduction to Janet bases and Grobner bases
    Castro-Jiménez, FJ
    Moreno-Frías, MA
    RING THEORY AND ALGEBRAIC GEOMETRY, 2001, 221 : 133 - 145
  • [27] GROBNER BASES FOR OPERADS
    Dotsenko, Vladimir
    Khoroshkin, Anton
    DUKE MATHEMATICAL JOURNAL, 2010, 153 (02) : 363 - 396
  • [28] Dynamical Grobner bases
    Yengui, Ihsen
    JOURNAL OF ALGEBRA, 2006, 301 (02) : 447 - 458
  • [29] COMPREHENSIVE GROBNER BASES
    WEISPFENNING, V
    JOURNAL OF SYMBOLIC COMPUTATION, 1992, 14 (01) : 1 - 29
  • [30] An Application of Grobner Bases
    Xia, Shengxiang
    Xia, Gaoxiang
    MATHEMATICS ENTHUSIAST, 2009, 6 (03):