A New Formula for the Bernoulli Polynomials

被引:86
|
作者
Mezo, Istvan [1 ]
机构
[1] Univ Debrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4010 Debrecen, Hungary
关键词
Stirling numbers; r-Stirling numbers; Whitney numbers; Bernoulli polynomials; Harmonic numbers; Stirling-type pairs; Hyperharmonic numbers; Harmonic polynomials; STIRLING NUMBERS;
D O I
10.1007/s00025-010-0039-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show that a seemingly new class of Stirling-type pairs can be applied to produce a new representation of the Bernoulli polynomials at positive rational arguments. A class of generalized harmonic numbers is also investigated, and we point out that these give a new relation for the so-called harmonic polynomials.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 50 条
  • [31] Two closed forms for the Apostol–Bernoulli polynomials
    Su Hu
    Min-Soo Kim
    The Ramanujan Journal, 2018, 46 : 103 - 117
  • [32] Discrete quasiprobability distributions involving Bernoulli polynomials
    Almutairi, Bander
    AIMS MATHEMATICS, 2023, 8 (06): : 12819 - 12829
  • [33] Identities Related to the Bernoulli and the Euler Numbers and Polynomials
    Al, Busra
    Alkan, Mustafa
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [34] Probabilistic degenerate Bernoulli and degenerate Euler polynomials
    Luo, Lingling
    Kim, Taekyun
    Kim, Dae San
    Ma, Yuankui
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 342 - 363
  • [35] Bernoulli polynomials for a new subclass of Te-univalent functions
    Saravanan, G.
    Baskaran, S.
    Vanithakumari, B.
    Alnaji, Lulah
    Shaba, Timilehin Gideon
    Al-Shbeil, Isra
    Lupas, Alina Alp
    HELIYON, 2024, 10 (14)
  • [36] New family of Bernoulli-type polynomials and some application
    Alejandro, Urieles
    William, Ramirez
    Roberto, Herrera
    Maria Jose, Ortega
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 (01): : 20 - 30
  • [37] A new generalization of the Genocchi numbers and its consequence on the Bernoulli polynomials
    Farhi, Bakir
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2022, 13 (04) : 18 - 28
  • [38] Bernoulli F-polynomials and Fibo–Bernoulli matrices
    Semra Kuş
    Naim Tuglu
    Taekyun Kim
    Advances in Difference Equations, 2019
  • [39] Diophantine equations and Bernoulli polynomials
    Bilu, YF
    Brindza, B
    Kirschenhofer, P
    Pintér, A
    Tichy, RF
    Schinzel, A
    COMPOSITIO MATHEMATICA, 2002, 131 (02) : 173 - 188
  • [40] On the Apostol-Bernoulli Polynomials
    Luo, Qiu-Ming
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (04): : 509 - 515