A New Formula for the Bernoulli Polynomials

被引:86
|
作者
Mezo, Istvan [1 ]
机构
[1] Univ Debrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4010 Debrecen, Hungary
关键词
Stirling numbers; r-Stirling numbers; Whitney numbers; Bernoulli polynomials; Harmonic numbers; Stirling-type pairs; Hyperharmonic numbers; Harmonic polynomials; STIRLING NUMBERS;
D O I
10.1007/s00025-010-0039-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show that a seemingly new class of Stirling-type pairs can be applied to produce a new representation of the Bernoulli polynomials at positive rational arguments. A class of generalized harmonic numbers is also investigated, and we point out that these give a new relation for the so-called harmonic polynomials.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 50 条
  • [21] Two closed forms for the Bernoulli polynomials
    Qi, Feng
    Chapman, Robin J.
    JOURNAL OF NUMBER THEORY, 2016, 159 : 89 - 100
  • [22] A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE AND POLY-BERNOULLI POLYNOMIALS
    Pathan, M. A.
    Khan, Waseem A.
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 317 - 330
  • [23] New identities and relations derived from the generalized Bernoulli polynomials, Euler polynomials and Genocchi polynomials
    Veli Kurt
    Advances in Difference Equations, 2014
  • [24] NEW FORMULAS FOR THE BERNOULLI AND EULER POLYNOMIALS AT RATIONAL ARGUMENTS
    CVIJOVIC, D
    KLINOWSKI, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (05) : 1527 - 1535
  • [25] Several new identities involving Euler and Bernoulli polynomials
    Wang Xiaoying
    Zhang Wenpeng
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (01): : 101 - 108
  • [26] A new unified family of generalized Apostol-Euler, Bernoulli and Genocchi polynomials
    El-Desouky, B. S.
    Gomaa, R. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 695 - 702
  • [27] On the analogue of Bernoulli polynomials
    Ryoo, Cheon Seoung
    Rim, Seog-Hoon
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2008, 10 (02) : 163 - 172
  • [28] On Poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint
    Dae San Kim
    Taekyun Kim
    Toufik Mansour
    Dmitry V Dolgy
    Advances in Difference Equations, 2015
  • [29] On Poly-Bernoulli polynomials of the second kind with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Mansour, Toufik
    Dolgy, Dmitry V.
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 13
  • [30] A Note on Bell-Based Bernoulli and Euler Polynomials of Complex Variable
    Alam, N.
    Khan, W. A.
    Obeidat, S.
    Muhiuddin, G.
    Diab, N. S.
    Zaidi, H. N.
    Altaleb, A.
    Bachioua, L.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (01): : 187 - 209