A New Formula for the Bernoulli Polynomials

被引:86
|
作者
Mezo, Istvan [1 ]
机构
[1] Univ Debrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4010 Debrecen, Hungary
关键词
Stirling numbers; r-Stirling numbers; Whitney numbers; Bernoulli polynomials; Harmonic numbers; Stirling-type pairs; Hyperharmonic numbers; Harmonic polynomials; STIRLING NUMBERS;
D O I
10.1007/s00025-010-0039-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show that a seemingly new class of Stirling-type pairs can be applied to produce a new representation of the Bernoulli polynomials at positive rational arguments. A class of generalized harmonic numbers is also investigated, and we point out that these give a new relation for the so-called harmonic polynomials.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 50 条
  • [1] A New Formula for the Bernoulli Polynomials
    István Mező
    Results in Mathematics, 2010, 58 : 329 - 335
  • [2] A Three-term Recurrence Formula for the Generalized Bernoulli Polynomials
    Boutiche, Mohamed Amine
    Guettai, Ghania
    Rahmani, Mourad
    Sebaoui, Madjid
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (06): : 139 - 145
  • [3] A THREE-TERM RECIPROCITY FORMULA FOR BERNOULLI POLYNOMIALS
    He, Yuan
    Zhang, Wenpeng
    UTILITAS MATHEMATICA, 2016, 100 : 23 - 31
  • [4] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386
  • [5] The Mobius inversion formula for Fourier series applied to Bernoulli and Euler polynomials
    Navas, Luis M.
    Ruiz, Francisco J.
    Varona, Juan L.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (01) : 22 - 40
  • [6] On reciprocity formula of character Dedekind sums and the integral of products of Bernoulli polynomials
    Dagli, M. Cihat
    Can, Mumun
    JOURNAL OF NUMBER THEORY, 2015, 156 : 105 - 124
  • [7] A new class of generalized polynomials associated with Laguerre and Bernoulli polynomials
    Khan, Nabiullah
    Usman, Talha
    Choi, Junesang
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 486 - 497
  • [8] Euler–MacLaurin Summation Formula on Polytopes and Expansions in Multivariate Bernoulli Polynomials
    L. Brandolini
    L. Colzani
    B. Gariboldi
    G. Gigante
    A. Monguzzi
    Journal of Fourier Analysis and Applications, 2023, 29
  • [9] A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE AND BERNOULLI POLYNOMIALS
    Pathan, Mahmood A.
    Khan, Waseem A.
    MATEMATICHE, 2015, 70 (01): : 53 - 70
  • [10] Bernoulli Polynomials and Their Some New Congruence Properties
    Duan, Ran
    Shen, Shimeng
    SYMMETRY-BASEL, 2019, 11 (03):