A New Formula for the Bernoulli Polynomials

被引:88
作者
Mezo, Istvan [1 ]
机构
[1] Univ Debrecen, Fac Informat, Dept Appl Math & Probabil Theory, H-4010 Debrecen, Hungary
关键词
Stirling numbers; r-Stirling numbers; Whitney numbers; Bernoulli polynomials; Harmonic numbers; Stirling-type pairs; Hyperharmonic numbers; Harmonic polynomials; STIRLING NUMBERS;
D O I
10.1007/s00025-010-0039-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show that a seemingly new class of Stirling-type pairs can be applied to produce a new representation of the Bernoulli polynomials at positive rational arguments. A class of generalized harmonic numbers is also investigated, and we point out that these give a new relation for the so-called harmonic polynomials.
引用
收藏
页码:329 / 335
页数:7
相关论文
共 8 条
[1]  
Benjamin A.T., 2003, Integers, V3, P1
[2]   On Whitney numbers of Dowling lattices [J].
Benoumhani, M .
DISCRETE MATHEMATICS, 1996, 159 (1-3) :13-33
[3]   THE R-STIRLING NUMBERS [J].
BRODER, AZ .
DISCRETE MATHEMATICS, 1984, 49 (03) :241-259
[4]   Generalized harmonic numbers with Riordan arrays [J].
Cheon, Gi-Sang ;
El-Mikkawy, M. E. A. .
JOURNAL OF NUMBER THEORY, 2008, 128 (02) :413-425
[5]   A symmetric algorithm for hyperharmonic and Fibonacci numbers [J].
Dil, Ayhan ;
Mezo, Istvan .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) :942-951
[6]  
Graham R.L., 1989, Concrete Mathematics
[7]   A unified approach to generalized Stirling numbers [J].
Hsu, LC ;
Shiue, PJS .
ADVANCES IN APPLIED MATHEMATICS, 1998, 20 (03) :366-384
[8]   Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence [J].
Mezo, Istvan ;
Dil, Ayhan .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (02) :310-321