Fluorine in Drug Design: A Case Study with Fluoroanisoles

被引:126
作者
Xing, Li [1 ]
Blakemore, David C. [2 ]
Narayanan, Arjun [1 ]
Unwalla, Ray [1 ]
Lovering, Frank [1 ]
Denny, R. Aldrin [1 ]
Zhou, Huanyu [3 ]
Bunnage, Mark E. [1 ]
机构
[1] Pfizer Inc, Worldwide Med Chem, Cambridge, MA 02139 USA
[2] Pfizer Neusentis, Worldwide Med Chem, Cambridge, England
[3] Pfizer Inc, Biotherapeut Clin Res, Cambridge, MA USA
关键词
ADME profiles; anisoles; drug design; fluorination; metabolic stability; ARYL DIFLUOROMETHYL ETHERS; MEDICINAL CHEMISTRY; C-F; DIFLUOROCARBENE PRECURSOR; THROMBIN INHIBITORS; HYDROGEN-BOND; ACTIVE-SITE; AB-INITIO; SUBSTITUTION; METABOLISM;
D O I
10.1002/cmdc.201402555
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Anisole and fluoroanisoles display distinct conformational preferences, as evident from a survey of their crystal structures. In addition to altering the free ligand conformation, various degrees of fluorination have a strong impact on physicochemical and pharmacokinetic properties. Analysis of anisole and fluoroanisole matched molecular pairs in the Pfizer corporate database reveals interesting trends: 1)PhOCF3 increases logD by approximate to 1log unit over PhOCH3 compounds; 2)PhOCF3 shows lower passive permeability despite its higher lipophilicity; and 3)PhOCF3 does not appreciably improve metabolic stability over PhOCH3. Emerging from the investigation, difluoroanisole (PhOCF2H) strikes a better balance of properties with noticeable advantages of logD and transcellular permeability over PhOCF3. Synthetic assessment illustrates that the routes to access difluoroanisoles are often more straightforward than those for trifluoroanisoles. Whereas replacing PhOCH3 with PhOCF3 is a common tactic to optimize ADME properties, our analysis suggests PhOCF2H may be a more attractive alternative, and greater exploitation of this motif is recommended.
引用
收藏
页码:715 / 726
页数:12
相关论文
共 52 条
[1]  
[Anonymous], 2013, ANGEW CHEM-GER EDIT, V125, P2146, DOI DOI 10.1002/ANGE.201209250
[2]  
Azzaoui K, 2007, CHEMMEDCHEM, V2, P874, DOI 10.1002/cmdc.200700036
[3]   FROM DIFLUOROCYCLOPROPENE TO DIFLUOROCYCLOPROPYLIDENE [J].
BABIN, D ;
PILORGE, F ;
DELBARRE, LM ;
DEMOUTE, JP .
TETRAHEDRON, 1995, 51 (35) :9603-9610
[4]   Fluorine in medicinal chemistry [J].
Böhm, HJ ;
Banner, D ;
Bendels, S ;
Kansy, M ;
Kuhn, B ;
Müller, K ;
Obst-Sander, U ;
Stahl, M .
CHEMBIOCHEM, 2004, 5 (05) :637-643
[5]   Fluorinated carbenes [J].
Brahms, DLS ;
Dailey, WP .
CHEMICAL REVIEWS, 1996, 96 (05) :1585-1632
[6]  
Burger M., 2012, U.S. Patent, Patent No. [US 2012225061 A1, 2012225061, US 2012225061 Al]
[7]   A SIMPLE CONVENIENT METHOD FOR PREPARATION OF DIFLUOROMETHYL ETHERS USING FLUOROSULFONYLDIFLUORACETIC ACID AS A DIFLUOROCARBENE PRECURSOR [J].
CHEN, QY ;
WU, SW .
JOURNAL OF FLUORINE CHEMISTRY, 1989, 44 (03) :433-440
[8]   Fluorine as a Hydrogen-Bond Acceptor: Experimental Evidence and Computational Calculations [J].
Dalvit, Claudio ;
Invernizzi, Christian ;
Vulpetti, Anna .
CHEMISTRY-A EUROPEAN JOURNAL, 2014, 20 (35) :11058-11068
[9]   Fluorine-Protein Interactions and 19F NMR Isotropic Chemical Shifts: An Empirical Correlation with Implications for Drug Design [J].
Dalvit, Claudio ;
Vulpetti, Anna .
CHEMMEDCHEM, 2011, 6 (01) :104-114
[10]   Development of a New Permeability Assay Using Low-Efflux MDCKII Cells [J].
Di, Li ;
Whitney-Pickett, Carrie ;
Umland, John P. ;
Zhang, Hui ;
Zhang, Xun ;
Gebhard, David F. ;
Lai, Yurong ;
Federico, James J., III ;
Davidson, Ralph E. ;
Smith, Russ ;
Reyner, Eric L. ;
Lee, Caroline ;
Feng, Bo ;
Rotter, Charles ;
Varma, Manthena V. ;
Kempshall, Sarah ;
Fenner, Katherine ;
El-Kattan, Ayman F. ;
Liston, Theodore E. ;
Troutman, Matthew D. .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2011, 100 (11) :4974-4985