GPU-Accelerated Parallel Monte Carlo Analysis of Analog Circuits by Hierarchical Graph-based Solver

被引:0
|
作者
Zhu, Yan [1 ]
Tan, Sheldon X. -D. [1 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
关键词
SYMBOLIC ANALYSIS; SIMULATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a new parallel matrix solver, which is very amenable for Graphic Process Unit (GPU) based fine-grain massively-threaded parallel computing. The new method is based on the graph-based symbolic analysis technique to generate the computing sequence of determinants in terms of determinant decision diagrams (DDDs). DDD represents very simple data dependence and data parallelism, which can be explored much easier by GPU massively-threaded parallel computing than existing LU-based methods. The new method is based on the hierarchical determinant decision diagrams (HDDDs). Inspired by the inherent data parallelism and simple data dependence in the evaluation process of HDDD, we design GPU-amenable continuous data structures to enable fast memory access and evaluation of massive parallel threads. In addition to parallelism in DDD graph, the new algorithm can naturally explore data independence existing in Monte Carlo and frequency domain analysis. The resulting algorithm is a general-purpose matrix solver suitable for fine-grain massive GPU-based computing for any circuit matrices. Experimental results show that the new evaluation algorithm can achieve about two orders of magnitude speedup over the serial CPU based evaluation and more than 4x speedup over numerical SPICE-based simulation method on some large analog circuits.
引用
收藏
页码:719 / 724
页数:6
相关论文
共 50 条
  • [31] GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium
    Yi, Xi
    Chen, Weiting
    Wu, Linhui
    Ma, Wenjuan
    Zhang, Wei
    Li, Jiao
    Wang, Xin
    Gao, Feng
    MULTIMODAL BIOMEDICAL IMAGING VII, 2012, 8216
  • [32] GPU-ACCELERATED AND CPU SIMD OPTIMIZED MONTE CARLO SIMULATION OF φ4 MODEL
    Bialas, Piotr
    Kowal, Jakub
    Strzelecki, Adam
    COMPUTING AND INFORMATICS, 2014, 33 (05) : 1191 - 1208
  • [33] GPU-Accelerated Mahalanobis-Average Hierarchical Clustering Analysis
    Smelko, Adam
    Kratochvil, Miroslav
    Krulis, Martin
    Sieger, Tomas
    EURO-PAR 2021: PARALLEL PROCESSING, 2021, 12820 : 580 - 595
  • [34] GPU-Accelerated Parallel Hierarchical Extreme Learning Machine on Flink for Big Data
    Chen, Cen
    Li, Kenli
    Ouyang, Aijia
    Tang, Zhuo
    Li, Keqin
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (10): : 2740 - 2753
  • [35] Radiance based method for accurate determination of volume scattering parameters using GPU-accelerated Monte Carlo
    Correia, Antonio
    Hanselaer, Peter
    Cornelissen, Hugo
    Meuret, Youri
    OPTICS EXPRESS, 2017, 25 (19): : 22575 - 22586
  • [36] GPU-Accelerated Full Monte Carlo Affords Accurate Voxel-Based Dosimetry for Radiopharmaceutical Therapy
    Grudzinski, Joseph
    Bednarz, Bryan
    Wickre, Paul
    Stearns, Charles
    Culberson, Wes
    Bertinetti, Andrew
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [37] A GPU-Accelerated Monte Carlo Dose Computation Engine for Precision Small Animal Radiotherapy
    Liu, Z.
    Yang, Y.
    MEDICAL PHYSICS, 2022, 49 (06) : E494 - E494
  • [38] Validation of a GPU-Accelerated Monte Carlo Treatment Planning System for Proton Beam Therapy
    Rucinski, A.
    Battistoni, G.
    Gora, E.
    Durante, M.
    Gajewski, J.
    Garbacz, M.
    Kisielewicz, K.
    Krah, N.
    Patera, V.
    Rinaldi, I.
    Sas-Korczynska, B.
    Skora, T.
    Skrzypek, A.
    Tommasino, F.
    Scifoni, E.
    Schiavi, A.
    MEDICAL PHYSICS, 2018, 45 (06) : E261 - E261
  • [39] Accelerated GPU based SPECT Monte Carlo simulations
    Garcia, Marie-Paule
    Bert, Julien
    Benoit, Didier
    Bardies, Manuel
    Visvikis, Dimitris
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (11): : 4001 - 4018
  • [40] GPU-ACCELERATED MONTE CARLO CODE FOR FAST DOSE RECALCULATION IN PROTON BEAM THERAPY
    Rucinski, A.
    Gajewski, J.
    Olko, P.
    Rinaldi, I.
    Patera, V.
    Schiavi, A.
    ACTA PHYSICA POLONICA B, 2017, 48 (10): : 1625 - 1630