Thermal Transport in Silicon Nanowires at High Temperature up to 700 K

被引:80
|
作者
Lee, Jaeho [1 ,4 ,6 ]
Lee, Woochul [3 ]
Lim, Jongwoo [1 ,4 ]
Yu, Yi [1 ]
Kong, Qiao [1 ]
Urban, Jeffrey J. [3 ]
Yang, Peidong [1 ,2 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[5] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[6] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
关键词
Thermal conductivity; thermoelectric; phonon transport; single nanowire; nanomaterial; ZT; THERMOELECTRIC PROPERTIES; PHONON TRANSPORT; HOLEY SILICON; CONDUCTIVITY; SI; SCATTERING;
D O I
10.1021/acs.nanolett.6b00956
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal transport in silicon nanowires has captured the attention of scientists for understanding phonon transport at the nanoscale, and the thermoelectric figure-of-merit (ZT) reported in rough nanowires has inspired engineers to develop cost-effective waste heat recovery systems. Thermoelectric generators composed of silicon target high-temperature applications due to improved efficiency beyond 550 K. However, there have been no studies of thermal transport in silicon nanowires beyond room temperature. High-temperature measurements also enable studies of unanswered questions regarding the impact of surface boundaries and varying mode contributions as the highest vibrational modes are activated (Debye temperature of silicon is 645 K). Here, we develop a technique to investigate thermal transport in nanowires up to 700 K. Our thermal conductivity measurements on smooth silicon nanowires show the classical diameter dependence from 40 to 120 nm. In conjunction with Boltzmann transport equation, we also probe an increasing contribution of high-frequency phonons (optical phonons) in smooth silicon nanowires as the diameter decreases and the temperature increases. Thermal conductivity of rough silicon nanowires is significantly reduced throughout the temperature range, demonstrating a potential for efficient thermoelectric generation (e.g., ZT = 1 at 700 K).
引用
收藏
页码:4133 / 4140
页数:8
相关论文
共 50 条
  • [1] Radial dependence of thermal transport in silicon nanowires
    Verdier, Maxime
    Han, Yang
    Lacroix, David
    Chapuis, Pierre-Olivier
    Termentzidis, Konstantinos
    JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (01):
  • [2] Kink effects on thermal transport in silicon nanowires
    Zhao, Yang
    Yang, Lin
    Liu, Chenhan
    Zhang, Qian
    Chen, Yunfei
    Yang, Juekuan
    Li, Deyu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 137 : 573 - 578
  • [3] Silicon carbide nanowires suspensions with high thermal transport properties
    Yu, Wei
    Wang, Mingzhu
    Xie, Huaqing
    Hu, Yiheng
    Chen, Lifei
    APPLIED THERMAL ENGINEERING, 2016, 94 : 350 - 354
  • [4] Surface effects on the thermal conductivity of silicon nanowires
    Li, Hai-Peng
    Zhang, Rui-Qin
    CHINESE PHYSICS B, 2018, 27 (03)
  • [5] Ballistic thermal transport in silicon nanowires
    Maire, Jeremie
    Anufriev, Roman
    Nomura, Masahiro
    SCIENTIFIC REPORTS, 2017, 7
  • [6] Anisotropy and temperature dependences of thermal conductivity for silicon nanowires
    Kuleyev I.G.
    Kuleyev I.I.
    Bakharev S.M.
    Kuleyev, I.G. (kuleev@imp.uran.ru), 1600, Allerton Press Incorporation (78): : 905 - 907
  • [7] Surface Faceting Dependence of Thermal Transport in Silicon Nanowires
    Sansoz, Frederic
    NANO LETTERS, 2011, 11 (12) : 5378 - 5382
  • [8] Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires
    Donadio, Davide
    Galli, Giulia
    NANO LETTERS, 2010, 10 (03) : 847 - 851
  • [9] Impact of Isotope Doping on Phonon Thermal Transport in Silicon Nanowires
    Hattori, Junichi
    Uno, Shigeyasu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (04)
  • [10] Surface effects on the thermal conductivity of silicon nanowires
    李海鹏
    张瑞勤
    Chinese Physics B, 2018, (03) : 76 - 83