Anomalous Diffusion of Dissipative Solitons in the Cubic-Quintic Complex Ginzburg-Landau Equation in Two Spatial Dimensions

被引:14
|
作者
Cisternas, Jaime [1 ]
Descalzi, Orazio [1 ]
Albers, Tony [2 ]
Radons, Guenter [2 ]
机构
[1] Univ Los Andes, Fac Ingn & Ciencias Aplicadas, Monsenor Alvaro Portillo 12455, Santiago, Chile
[2] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
RANDOM-WALKS; CONVECTION; LASER;
D O I
10.1103/PhysRevLett.116.203901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate the occurrence of anomalous diffusion of dissipative solitons in a "simple" and deterministic prototype model: the cubic-quintic complex Ginzburg-Landau equation in two spatial dimensions. The main features of their dynamics, induced by symmetric-asymmetric explosions, can be modeled by a subdiffusive continuous-time random walk, while in the case dominated by only asymmetric explosions, it becomes characterized by normal diffusion.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    PHYSICS LETTERS A, 2005, 347 (4-6) : 231 - 240
  • [2] Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions A review and a perspective
    Cartes, C.
    Descalzi, O.
    Brand, H. R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (11): : 2145 - 2159
  • [3] Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation
    Kalashnikov, V. L.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [4] Stability of dissipative solitons as solutions of asymmetrical complex cubic-quintic Ginzburg-Landau equation
    Skarka, V.
    Aleksic, N. B.
    Gauthier, D.
    Timotijevic, D. V.
    PIERS 2007 BEIJING: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PTS I AND II, PROCEEDINGS, 2007, : 1196 - +
  • [5] Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensionsA review and a perspective
    C. Cartes
    O. Descalzi
    H.R. Brand
    The European Physical Journal Special Topics, 2014, 223 : 2145 - 2159
  • [6] Stable one-dimensional dissipative solitons in complex cubic-quintic Ginzburg-Landau equation
    Aleksic, N. B.
    Pavlovic, G.
    Aleksic, B. N.
    Skarka, V.
    ACTA PHYSICA POLONICA A, 2007, 112 (05) : 941 - 947
  • [7] Influence of Dirichlet boundary conditions on dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation
    Descalzi, Orazio
    Brand, Helmut R.
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [8] Dissipative Solitons in a Generalized Coupled Cubic-Quintic Ginzburg-Landau Equations
    Zakeri, Gholam-Ali
    Yomba, Emmanuel
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (08)
  • [9] Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation
    Mihalache, D.
    Mazilu, D.
    Lederer, F.
    Leblond, H.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [10] Dynamics of NLS solitons described by the cubic-quintic Ginzburg-Landau equation
    Zhuravlev, MN
    Ostrovskaya, NV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (02) : 427 - 442