A review on radiomics and the future of theranostics for patient selection in precision medicine

被引:55
作者
Keek, Simon A. [1 ,2 ]
Leijenaar, Ralph Th [1 ,2 ]
Jochems, Arthur [1 ,2 ]
Woodruff, Henry C. [1 ,2 ,3 ]
机构
[1] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, Lab Decis Support Precis Med D, Maastricht, Netherlands
[2] Maastricht Univ, Med Ctr, MCCC, Maastricht, Netherlands
[3] Maastricht Univ, Med Ctr, Dept Radiat Oncol MAASTRO, GROW Sch Oncol & Dev Biol, Maastricht, Netherlands
关键词
CT TEXTURE FEATURES; FDG-PET RADIOMICS; FEATURE STABILITY; EXTERNAL VALIDATION; PROGNOSTIC VALUE; TEST-RETEST; CANCER; IMAGES; REPRODUCIBILITY; HETEROGENEITY;
D O I
10.1259/bjr.20170926
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The growing complexity and volume of clinical data and the associated decision-making processes in oncology promote the advent of precision medicine. Precision (or personalised) medicine describes preventive and/or treatment procedures that take individual patient variability into account when proscribing treatment, and has been hindered in the past by the strict requirements of accurate, robust, repeatable and preferably non-invasive biomarkers to stratify both the patient and the disease. In oncology, tumour subtypes are traditionally measured through repeated invasive biopsies, which are taxing for the patient and are cost and labour intensive. Quantitative analysis of routine clinical imaging provides an opportunity to capture tumour heterogeneity non-invasively, cost-effectively and on large scale. In current clinical practice radiological images are qualitatively analysed by expert radiologists whose interpretation is known to suffer from inter-and intra-operator variability. Radiomics, the high-throughput mining of image features from medical images, provides a quantitative and robust method to assess tumour heterogeneity, and radiomics-based signatures provide a powerful tool for precision medicine in cancer treatment. This study aims to provide an overview of the current state of radiomics as a precision medicine decision support tool. We first provide an overview of the requirements and challenges radiomics currently faces in being incorporated as a tool for precision medicine, followed by an outline of radiomics' current applications in the treatment of various types of cancer. We finish with a discussion of possible future advances that can further develop radiomics as a precision medicine tool.
引用
收藏
页数:9
相关论文
共 89 条
[1]   Rapid-Learning System for Cancer Care [J].
Abernethy, Amy P. ;
Etheredge, Lynn M. ;
Ganz, Patricia A. ;
Wallace, Paul ;
German, Robert R. ;
Neti, Chalapathy ;
Bach, Peter B. ;
Murphy, Sharon B. .
JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (27) :4268-4274
[2]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[3]   Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: A prospective validation [J].
Aerts, Hugo J. W. L. ;
Bussink, Johan ;
Oyen, Wim J. G. ;
van Elmpt, Wouter ;
Folgering, Annemieke M. ;
Emans, Daisy ;
Velders, Marije ;
Lambin, Philippe ;
De Ruysscher, Dirk .
LUNG CANCER, 2012, 75 (01) :73-76
[4]   Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy 18Fluorodeoxyglucose-PET-CT scan [J].
Aerts, Hugo J. W. L. ;
van Baardwijk, Angela A. W. ;
Petit, Steven F. ;
Offermann, Claudia ;
van Loon, Judith ;
Houben, Ruud ;
Dingemans, Anne-Marie C. ;
Wanders, Rinus ;
Boersma, Liesbeth ;
Borger, Jacques ;
Bootsma, Gerben ;
Geraedts, Wiel ;
Pitz, Cordula ;
Simons, Jean ;
Wouters, Bradly G. ;
Oellers, Michel ;
Lambin, Philippe ;
Bosmans, Geert ;
Dekker, Andre L. A. J. ;
De Ruysscher, Dirk .
RADIOTHERAPY AND ONCOLOGY, 2009, 91 (03) :386-392
[5]   Incorporation of pre-therapy 18F-FDG uptake data with CT texture features into a radiomics model for radiation pneumonitis diagnosis [J].
Anthony, Gregory J. ;
Cunliffe, Alexandra ;
Castillo, Richard ;
Pham, Ngoc ;
Guerrero, Thomas ;
Armato, Samuel G., III ;
Al-Hallaq, Hania A. .
MEDICAL PHYSICS, 2017, 44 (07) :3686-3694
[6]   Multi-site quality and variability analysis of 3D FDG PET segmentations based on phantom and clinical image data [J].
Beichel, Reinhard R. ;
Smith, Brian J. ;
Bauer, Christian ;
Ulrich, Ethan J. ;
Ahmadvand, Payam ;
Budzevich, Mikalai M. ;
Gillies, Robert J. ;
Goldgof, Dmitry ;
Grkovski, Milan ;
Hamarneh, Ghassan ;
Huang, Qiao ;
Kinahan, Paul E. ;
Laymon, Charles M. ;
Mountz, James M. ;
Muzi, John P. ;
Muzi, Mark ;
Nehmeh, Sadek ;
Oborski, Matthew J. ;
Tan, Yongqiang ;
Zhao, Binsheng ;
Sunderland, John J. ;
Buatti, John M. .
MEDICAL PHYSICS, 2017, 44 (02) :479-496
[7]   Post-radiochemotherapy PET radiomics in head and neck cancer - The influence of radiomics implementation on the reproducibility of local control tumor models [J].
Bogowicz, Marta ;
Leijenaar, Ralph T. H. ;
Tanadini-Lang, Stephanie ;
Riesterer, Oliver ;
Pruschy, Martin ;
Studer, Gabriela ;
Unkelbach, Jan ;
Guckenberger, Matthias ;
Konukoglu, Ender ;
Lambin, Philippe .
RADIOTHERAPY AND ONCOLOGY, 2017, 125 (03) :385-391
[8]   Clinical Cancer Advances 2017: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology [J].
Burstein, Harold J. ;
Krilov, Lada ;
Aragon-Ching, Jeanny B. ;
Baxter, Nancy N. ;
Chiorean, E. Gabriela ;
Chow, Warren Allen ;
De Groot, John Frederick ;
Devine, Steven Michael ;
DuBois, Steven G. ;
El-Deiry, Wafik S. ;
Epstein, Andrew S. ;
Heymach, John ;
Jones, Joshua Adam ;
Mayer, Deborah K. ;
Miksad, Rebecca A. ;
Pennell, Nathan A. ;
Sabel, Michael S. ;
Schilsky, Richard L. ;
Schuchter, Lynn Mara ;
Tung, Nadine ;
Winkfield, Karen Marie ;
Wirth, Lori J. ;
Dizon, Don S. .
JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (12) :1341-+
[9]   Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning [J].
Cha, Kenny H. ;
Hadjiiski, Lubomir ;
Chan, Heang-Ping ;
Weizer, Alon Z. ;
Alva, Ajjai ;
Cohan, Richard H. ;
Caoili, Elaine M. ;
Paramagul, Chintana ;
Samala, Ravi K. .
SCIENTIFIC REPORTS, 2017, 7
[10]   A New Initiative on Precision Medicine [J].
Collins, Francis S. ;
Varmus, Harold .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 372 (09) :793-795