Thermostat-Like Perturbations of an Oscillator

被引:1
|
作者
Freidlin, Mark [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Perturbations of an oscillator; Large deviations; Metastability;
D O I
10.1007/s10955-016-1531-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider an oscillator with one degree of freedom perturbed by a deterministic thermostat-like perturbation and another system, in particular, another oscillator, coupled with the first one. If the Hamiltonian of the first system has saddle points, the whole system has, in a sense, a stochastic behavior on long time intervals. Under certain conditions, one can introduce the relative entropy and describe metastability and other large deviation effects in this deterministic system. If the coupled system is also an oscillator, the long time evolution of the energy of this oscillator has a diffusion approximation. To get these results one has to regularize the system. But the results are, to some extent, independent of the regularization: the stochasticity is due to instabilities at saddle points of the original system.
引用
收藏
页码:130 / 141
页数:12
相关论文
共 50 条
  • [21] EXPONENTIAL PERTURBATIONS OF THE HARMONIC-OSCILLATOR
    MAIOLI, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) : 1952 - 1958
  • [22] Emotion as a thermostat: Representing emotion regulation using a damped oscillator model
    Chow, SM
    Ram, N
    Boker, SM
    Fujita, F
    Clore, G
    EMOTION, 2005, 5 (02) : 208 - 225
  • [23] Spectral asymptotics for nonsmooth perturbations of the harmonic oscillator
    Akhmerova, E. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (06) : 968 - 984
  • [24] Spectral asymptotics for nonsmooth perturbations of the harmonic oscillator
    E. F. Akhmerova
    Siberian Mathematical Journal, 2008, 49 : 968 - 984
  • [25] On Ergodicity for Multidimensional Harmonic Oscillator Systems with Nose - Hoover-type Thermostat
    Fukuda, Ikuo
    Moritsugu, Kei
    Fukunishi, Yoshifumi
    REGULAR & CHAOTIC DYNAMICS, 2021, 26 (02): : 183 - 204
  • [26] Quasiperiodic perturbations of an oscillator with a cubic restoring force
    Bibikov, YN
    DIFFERENTIAL EQUATIONS, 1996, 32 (12) : 1586 - 1591
  • [27] Coupled oscillator model for nonlinear gravitational perturbations
    Yang, Huan
    Zhang, Fan
    Green, Stephen R.
    Lehner, Luis
    PHYSICAL REVIEW D, 2015, 91 (08):
  • [28] Propagation of small perturbations in synchronized oscillator networks
    Zanette, DH
    EUROPHYSICS LETTERS, 2004, 68 (03): : 356 - 362
  • [29] Integrable perturbations of the harmonic oscillator and Poisson pencils
    Marciniak, K
    Rauch-Wojciechowski, S
    INVERSE PROBLEMS, 2001, 17 (02) : 191 - 209
  • [30] Neuronal oscillator robustness to multiple global perturbations
    Ratliff, Jacob
    Franci, Alessio
    Marder, Eve
    O'Leary, Timothy
    BIOPHYSICAL JOURNAL, 2021, 120 (08) : 1454 - 1468