Deep Convolutional Neural Networks for Multi-Instance Multi-Task Learning

被引:36
|
作者
Zeng, Tao [1 ]
Ji, Shuiwang [1 ]
机构
[1] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM) | 2015年
关键词
Deep learning; multi-instance learning; multi-task learning; transfer learning; bioinformatics; ANNOTATION;
D O I
10.1109/ICDM.2015.92
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-instance learning studies problems in which labels are assigned to bags that contain multiple instances. In these settings, the relations between instances and labels are usually ambiguous. In contrast, multi-task learning focuses on the output space in which an input sample is associated with multiple labels. In real world, a sample may be associated with multiple labels that are derived from observing multiple aspects of the problem. Thus many real world applications are naturally formulated as multi-instance multi-task (MIMT) problems. A common approach to MIMT is to solve it task-by-task independently under the multi-instance learning framework. On the other hand, convolutional neural networks (CNN) have demonstrated promising performance in single-instance single-label image classification tasks. However, how CNN deals with multi-instance multi-label tasks still remains an open problem. This is mainly due to the complex multiple-to-multiple relations between the input and output space. In this work, we propose a deep leaning model, known as multi-instance multi-task convolutional neural networks (MIMT-CNN), where a number of images representing a multi-task problem is taken as the inputs. Then a shared sub-CNN is connected with each input image to form instance representations. Those sub-CNN outputs are subsequently aggregated as inputs to additional convolutional layers and full connection layers to produce the ultimate multi-label predictions. This CNN model, through transfer learning from other domains, enables transfer of prior knowledge at image level learned from large single-label single-task data sets. The bag level representations in this model are hierarchically abstracted by multiple layers from instance level representations. Experimental results on mouse brain gene expression pattern annotation data show that the proposed MIMT-CNN model achieves superior performance.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 50 条
  • [41] MULTI-TASK DEEP NEURAL NETWORK FOR MULTI-LABEL LEARNING
    Huang, Yan
    Wang, Wei
    Wang, Liang
    Tan, Tieniu
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 2897 - 2900
  • [42] Generalized attention-based deep multi-instance learning
    Lu Zhao
    Liming Yuan
    Kun Hao
    Xianbin Wen
    Multimedia Systems, 2023, 29 : 275 - 287
  • [43] Multi-Instance Multi-Task Learning for Joint Clinical Outcome and Genomic Profile Predictions From the Histopathological Images
    Shao, Wei
    Shi, Hang
    Liu, Jianxin
    Zuo, Yingli
    Sun, Liang
    Xia, Tiansong
    Chen, Wanyuan
    Wan, Peng
    Sheng, Jianpeng
    Zhu, Qi
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (06) : 2266 - 2278
  • [45] Style-adaptive photo aesthetic rating via convolutional neural networks and multi-task learning
    Gao, Fei
    Li, Ziyun
    Yu, Jun
    Yu, Junze
    Huang, Qingming
    Tian, Qi
    NEUROCOMPUTING, 2020, 395 : 247 - 254
  • [46] Integrating Convolutional Neural Networks and Multi-Task Dictionary Learning for Cognitive Decline Prediction with Longitudinal Images
    Dong, Qunxi
    Zhang, Jie
    Li, Qingyang
    Wang, Junwen
    Lepore, Natasha
    Thompson, Paul M.
    Caselli, Richard J.
    Ye, Jieping
    Wang, Yalin
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 75 (03) : 971 - 992
  • [47] Multi-task multi-label multiple instance learning
    Shen, Yi
    Fan, Jian-ping
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2010, 11 (11): : 860 - 871
  • [48] Deep Multi-Instance Multi-Label Learning for Image Annotation
    Guo, Hai-Feng
    Han, Lixin
    Su, Shoubao
    Sun, Zhou-Bao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (03)
  • [49] Multi-Cell Multi-Task Convolutional Neural Networks for Diabetic Retinopathy Grading
    Zhou, Kang
    Gu, Zaiwang
    Liu, Wen
    Luo, Weixin
    Cheng, Jun
    Gao, Shenghua
    Liu, Jiang
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2724 - 2727
  • [50] Brain Networks Classification Based on an Adaptive Multi-Task Convolutional Neural Networks
    Xing X.
    Ji J.
    Yao Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (07): : 1449 - 1459