Deep Convolutional Neural Networks for Multi-Instance Multi-Task Learning

被引:36
|
作者
Zeng, Tao [1 ]
Ji, Shuiwang [1 ]
机构
[1] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
来源
2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM) | 2015年
关键词
Deep learning; multi-instance learning; multi-task learning; transfer learning; bioinformatics; ANNOTATION;
D O I
10.1109/ICDM.2015.92
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-instance learning studies problems in which labels are assigned to bags that contain multiple instances. In these settings, the relations between instances and labels are usually ambiguous. In contrast, multi-task learning focuses on the output space in which an input sample is associated with multiple labels. In real world, a sample may be associated with multiple labels that are derived from observing multiple aspects of the problem. Thus many real world applications are naturally formulated as multi-instance multi-task (MIMT) problems. A common approach to MIMT is to solve it task-by-task independently under the multi-instance learning framework. On the other hand, convolutional neural networks (CNN) have demonstrated promising performance in single-instance single-label image classification tasks. However, how CNN deals with multi-instance multi-label tasks still remains an open problem. This is mainly due to the complex multiple-to-multiple relations between the input and output space. In this work, we propose a deep leaning model, known as multi-instance multi-task convolutional neural networks (MIMT-CNN), where a number of images representing a multi-task problem is taken as the inputs. Then a shared sub-CNN is connected with each input image to form instance representations. Those sub-CNN outputs are subsequently aggregated as inputs to additional convolutional layers and full connection layers to produce the ultimate multi-label predictions. This CNN model, through transfer learning from other domains, enables transfer of prior knowledge at image level learned from large single-label single-task data sets. The bag level representations in this model are hierarchically abstracted by multiple layers from instance level representations. Experimental results on mouse brain gene expression pattern annotation data show that the proposed MIMT-CNN model achieves superior performance.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 50 条
  • [21] Ensembles of multi-instance neural networks
    Zhang, ML
    Zhou, ZH
    INTELLIGENT INFORMATION PROCESSING II, 2005, 163 : 471 - 474
  • [22] Attention-Aware Multi-Task Convolutional Neural Networks
    Lyu, Kejie
    Li, Yingming
    Zhang, Zhongfei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1867 - 1878
  • [23] Multi-Task Federated Learning for Personalised Deep Neural Networks in Edge Computing
    Mills, Jed
    Hu, Jia
    Min, Geyong
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (03) : 630 - 641
  • [24] Deep Multi-task Convolutional Neural Networks for Efficient Classification of Face Attributes
    Rohani M.
    Farsi H.
    Mohamadzadeh S.
    International Journal of Engineering, Transactions A: Basics, 2023, 36 (11): : 2102 - 2111
  • [25] Regularized Instance Embedding for Deep Multi-Instance Learning
    Lin, Yi
    Zhang, Honggang
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [26] Deep Convolutional Neural Network with Multi-Task Learning Scheme for Modulations Recognition
    Mossad, Omar S.
    ElNainay, Mustafa
    Torki, Marwan
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1644 - 1649
  • [27] Using Multi-task Learning to Improve Diagnostic Performance of Convolutional Neural Networks
    Fang, Mengjie
    Dong, Di
    Sun, Ruijia
    Fan, Li
    Sun, Yingshi
    Liu, Shiyuan
    Tian, Jie
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [28] MULTI-TASK LEARNING IN DEEP NEURAL NETWORKS FOR IMPROVED PHONEME RECOGNITION
    Seltzer, Michael L.
    Droppo, Jasha
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6965 - 6969
  • [29] Rapid Adaptation for Deep Neural Networks through Multi-Task Learning
    Huang, Zhen
    Li, Jinyu
    Siniscalchi, Sabato Marco
    Chen, I-Fan
    Wu, Ji
    Lee, Chin-Hui
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 3625 - 3629
  • [30] Multi-task Learning Deep Neural Networks For Speech Feature Denoising
    Huang, Bin
    Ke, Dengfeng
    Zheng, Hao
    Xu, Bo
    Xu, Yanyan
    Su, Kaile
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 2464 - 2468