Generalized Wigner functions for damped systems in deformation quantization

被引:0
|
作者
Heng Tai-Hua [1 ]
Jing Si-Cong [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
关键词
Wigner function; damped system; deformation quantization;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantization of damped systems usually gives rise to complex spectra and corresponding resonant states, which do not belong to the Hilbert space. Therefore, the standard form of calculating Wigner function (WF) does not work for these systems. In this paper we show that in order to let WF satisfy a *-genvalue equation for the damped systems, one must modify its standard form slightly, and this modification exactly coincides with the results derived from a *-Exponential expansion in deformation quantization.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [31] Wigner functions and bond orders
    Schmider, Hartmut
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2006, 220 (07): : 859 - 884
  • [32] DISSIPATIVE SCALAR FIELD THEORY VIA DEFORMATION QUANTIZATION
    Carrillo-Ibarra, Iliana
    Garcia-Compean, Hugo
    Turrubiates, Francisco J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (16):
  • [33] States and representations in deformation quantization
    Waldmann, S
    REVIEWS IN MATHEMATICAL PHYSICS, 2005, 17 (01) : 15 - 75
  • [34] Deformation quantization of fermi fields
    Galaviz, I.
    Garcia-Compean, H.
    Przanowski, M.
    Turrubiates, F. J.
    ANNALS OF PHYSICS, 2008, 323 (04) : 827 - 844
  • [35] The character map in deformation quantization
    Cattaneo, Alberto S.
    Felder, Giovanni
    Willwacher, Thomas
    ADVANCES IN MATHEMATICS, 2011, 228 (04) : 1966 - 1989
  • [36] Deformation quantization of contact manifolds
    Elfimov, Boris M.
    Sharapov, Alexey A.
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (06)
  • [37] Deformation quantization and Nambu Mechanics
    Dito, G
    Flato, M
    Sternheimer, D
    Takhtajan, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (01) : 1 - 22
  • [38] Morita theory in deformation quantization
    Stefan Waldmann
    Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 831 - 852
  • [39] Deformation quantization and Nambu Mechanics
    G. Dito
    M. Flato
    D. Sternheimer
    L. Takhtajan
    Communications in Mathematical Physics, 1997, 183 : 1 - 22
  • [40] QUANTIZATION VIA DEFORMATION OF PREQUANTIZATION
    Duval, Christian
    Gotay, Mark J.
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (03) : 361 - 374