3D magnetic resonance image denoising using low-rank tensor approximation

被引:39
|
作者
Fu, Ying [1 ]
Dong, Weisheng [2 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[2] Xidian Univ, Sch Elect Engn, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
关键词
3D Magnetic resonance image; Low-rank tensor approximation; Non-locality; Self-similarity; MR-IMAGES; NOISE REMOVAL; RICIAN NOISE; ALGORITHM; RESTORATION; FILTRATION; VARIANCE;
D O I
10.1016/j.neucom.2015.09.125
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Magnetic Resonance (MR) Imaging technique has important applications in clinical diagnosis and scientific research. However, in practice the MR images are often corrupted by noise. Existing image denoising methods, mostly designed for natural image denoising do not take into account the multiple dimensionality of the 3D MR images, and are thus not suitable for 3D MR images denoising. In this paper, we present a novel noise reduction method for 3D MR images based on low-rank tensor approximation, considering both the non-local spatial self-similarity and the correlation across the slices of the 3D MR images. Specifically, for each exemplar 3D patch, similar 3D patches are first grouped to form a 4th order tensor. As the similar patches contain similar structures, the latent clear MR images can be recovered by a low-rank tensor approximation. To this end, an adaptive higher order singular value thresholding method is proposed. Experimental results on 3D MR images show that the proposed method can provide substantial improvements over the current state-of-the-art image denoising methods in terms of both objective metric and subjective visual quality. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [31] Hyperspectral Image Denoising With Total Variation Regularization and Nonlocal Low-Rank Tensor Decomposition
    Zhang, Hongyan
    Liu, Lu
    He, Wei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3071 - 3084
  • [32] A survey on hyperspectral image restoration: from the view of low-rank tensor approximation
    Liu, Na
    Li, Wei
    Wang, Yinjian
    Tao, Ran
    Du, Qian
    Chanussot, Jocelyn
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (04)
  • [33] A survey on hyperspectral image restoration: from the view of low-rank tensor approximation
    Na Liu
    Wei Li
    Yinjian Wang
    Ran Tao
    Qian Du
    Jocelyn Chanussot
    Science China Information Sciences, 2023, 66
  • [34] Multimode Structural Nonconvex Tensor Low-Rank Regularized Hyperspectral Image Destriping and Denoising
    Liu, Pengfei
    Long, Haijian
    Ni, Kang
    Zheng, Zhizhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [35] Hyperspectral image denoising with superpixel segmentation and low-rank representation
    Fan, Fan
    Ma, Yong
    Li, Chang
    Mei, Xiaoguang
    Huang, Jun
    Ma, Jiayi
    INFORMATION SCIENCES, 2017, 397 : 48 - 68
  • [36] Hyperspectral Image Denoising and Anomaly Detection Based on Low-Rank and Sparse Representations
    Zhuang, Lina
    Gao, Lianru
    Zhang, Bing
    Fu, Xiyou
    Bioucas-Dias, Jose M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Image denoising by low-rank approximation with estimation of noise energy distribution in SVD domain
    Fan, Linwei
    Meng, Ran
    Guo, Qiang
    Shi, Miaowen
    Zhang, Caiming
    IET IMAGE PROCESSING, 2019, 13 (04) : 680 - 691
  • [38] Hyperspectral Image Denoising Using Improved Low-Rank and Sparsity Constraints
    Zhong, Chongxiao
    Zhang, Junping
    Guo, Qingle
    EARTH OBSERVING SYSTEMS XXIII, 2018, 10764
  • [39] Enhanced Low-Rank Tensor Recovery Fusing Reweighted Tensor Correlated Total Variation Regularization for Image Denoising
    Huang, Kai
    Kong, Weichao
    Zhou, Min
    Qin, Wenjin
    Zhang, Feng
    Wang, Jianjun
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [40] L0 GRADIENT REGULARIZED LOW-RANK TENSOR MODEL FOR HYPERSPECTRAL IMAGE DENOISING
    Wang, Minghua
    Wang, Qiang
    Chanussot, Jocelyn
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,