Viscosity solutions for an optimal control problem with Preisach hysteresis nonlinearities

被引:13
作者
Bagagiolo, F [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
hysteresis; optimal control; dynamic programming; viscosity solutions;
D O I
10.1051/cocv:2004007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton-Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.
引用
收藏
页码:271 / 294
页数:24
相关论文
共 21 条
[1]  
[Anonymous], 1996, GAKUTO INT SERIES
[2]   Dynamic programming for some optimal control problems with hysteresis [J].
Bagagiolo, F .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 9 (02) :149-174
[3]   An infinite horizon optimal control problem for some switching systems [J].
Bagagiolo, F .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2001, 1 (04) :443-462
[4]  
BAGAGIOLO F, 2003, 647 U TRENT DEP MATH
[5]  
Bardi M, 1997, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Foundations and Applications, DOI [DOI 10.1007/978-0-8176-4755-1, 10.1007/978-0-8176-4755-1]
[6]   FULLY NONLINEAR NEUMANN TYPE BOUNDARY-CONDITIONS FOR 1ST-ORDER HAMILTON-JACOBI EQUATIONS [J].
BARLES, G ;
LIONS, PL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (02) :143-153
[7]   Dynamic programming for systems with hysteresis [J].
Belbas, SA ;
Mayergoyz, ID .
PHYSICA B-CONDENSED MATTER, 2001, 306 (1-4) :200-205
[8]   Optimal control of dynamic systems with hysteresis [J].
Belbas, SA ;
Mayergoyz, ID .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (01) :22-28
[9]  
BROKATE M, 1992, DYNAMIC EC MODELS OP, P51
[10]  
BROKATE M, 1997, HYSTERESIS PHASE TRA