netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis

被引:63
|
作者
Elyanow, Rebecca [1 ,2 ]
Dumitrascu, Bianca [3 ,5 ,6 ]
Engelhardt, Barbara E. [2 ,4 ,7 ]
Raphael, Benjamin J. [2 ]
机构
[1] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
[3] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[4] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08540 USA
[5] Duke Univ, SAMSI, Durham, NC 27706 USA
[6] Duke Univ, Dept Stat Sci, Durham, NC 27706 USA
[7] Genomics Plc, Oxford, England
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
RNA-SEQ; REVEALS; TRANSCRIPTOMICS; MICROARRAY; DATABASE;
D O I
10.1101/gr.251603.119
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) enables high-throughput measurement of RNA expression in single cells. However, because of technical limitations, scRNA-seq data often contain zero counts for many transcripts in individual cells. These zero counts, or dropout events, complicate the analysis of scRNA-seq data using standard methods developed for bulk RNA-seq data. Current scRNA-seq analysis methods typically overcome dropout by combining information across cells in a lower-dimensional space, leveraging the observation that cells generally occupy a small number of RNA expression states. We introduce netNMF-sc, an algorithm for scRNA-seq analysis that leverages information across both cells and genes. netNMF-sc learns a low-dimensional representation of scRNA-seq transcript counts using network-regularized non-negative matrix factorization. The network regularization takes advantage of prior knowledge of gene-gene interactions, encouraging pairs of genes with known interactions to be nearby each other in the low-dimensional representation. The resulting matrix factorization imputes gene abundance for both zero and nonzero counts and can be used to cluster cells into meaningful subpopulations. We show that netNMF-sc outperforms existing methods at clustering cells and estimating gene-gene covariance using both simulated and real scRNA-seq data, with increasing advantages at higher dropout rates (e.g., >60%). We also show that the results from netNMF-sc are robust to variation in the input network, with more representative networks leading to greater performance gains.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 50 条
  • [21] Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns
    Sanchez-Freire, Veronica
    Ebert, Antje D.
    Kalisky, Tomer
    Quake, Stephen R.
    Wu, Joseph C.
    NATURE PROTOCOLS, 2012, 7 (05) : 829 - 838
  • [22] Single-Cell Analysis of the Gene Expression Effects of Developmental Lead (Pb) Exposure on the Mouse Hippocampus
    Bakulski, Kelly M.
    Dou, John F.
    Thompson, Robert C.
    Lee, Christopher
    Middleton, Lauren Y.
    Perera, Bambarendage P. U.
    Ferris, Sean P.
    Jones, Tamara R.
    Neier, Kari
    Zhou, Xiang
    Sartor, Maureen A.
    Hammoud, Saher S.
    Dolinoy, Dana C.
    Colacino, Justin A.
    TOXICOLOGICAL SCIENCES, 2020, 176 (02) : 396 - 409
  • [23] Batch effects and the effective design of single-cell gene expression studies
    Tung, Po-Yuan
    Blischak, John D.
    Hsiao, Chiaowen Joyce
    Knowles, David A.
    Burnett, Jonathan E.
    Pritchard, Jonathan K.
    Gilad, Yoav
    SCIENTIFIC REPORTS, 2017, 7
  • [24] Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming
    Schiebinger, Geoffrey
    Shu, Jian
    Tabaka, Marcin
    Cleary, Brian
    Subramanian, Vidya
    Solomon, Aryeh
    Gould, Joshua
    Liu, Siyan
    Lin, Stacie
    Berube, Peter
    Lee, Lia
    Chen, Jenny
    Brumbaugh, Justin
    Rigollet, Philippe
    Hochedlinger, Konrad
    Jaenisch, Rudolf
    Regev, Aviv
    Lander, Eric S.
    CELL, 2019, 176 (04) : 928 - +
  • [25] MTGO-SC, A Tool to Explore Gene Modules in Single-Cell RNA Sequencing Data
    Nazzicari, Nelson
    Vella, Danila
    Coronnello, Claudia
    Di Silvestre, Dario
    Bellazzi, Riccardo
    Marini, Simone
    FRONTIERS IN GENETICS, 2019, 10
  • [26] Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq
    Cadwell, Cathryn R.
    Scala, Federico
    Li, Shuang
    Livrizzi, Giulia
    Shen, Shan
    Sandberg, Rickard
    Jiang, Xiaolong
    Tolias, Andreas S.
    NATURE PROTOCOLS, 2017, 12 (12) : 2531 - 2553
  • [27] Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons
    Wang, Jiaxu
    Jenjaroenpun, Piroon
    Bhinge, Akshay
    Angarica, Vladimir Espinosa
    Del Sol, Antonio
    Nookaew, Intawat
    Kuznetsov, Vladimir A.
    Stanton, Lawrence W.
    GENOME RESEARCH, 2017, 27 (11) : 1783 - 1794
  • [28] Inferring Relevant Cell Types for Complex Traits by Using Single-Cell Gene Expression
    Calderon, Diego
    Bhaskar, Anand
    Knowles, David A.
    Golan, David
    Raj, Towfique
    Fu, Audrey Q.
    Pritchard, Jonathan K.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (05) : 686 - 699
  • [29] Decoding the regulatory network of early blood development from single-cell gene expression measurements
    Moignard, Victoria
    Woodhouse, Steven
    Haghverdi, Laleh
    Lilly, Andrew J.
    Tanaka, Yosuke
    Wilkinson, Adam C.
    Buettner, Florian
    Macaulay, Iain C.
    Jawaid, Wajid
    Diamanti, Evangelia
    Nishikawa, Shin-Ichi
    Piterman, Nir
    Kouskoff, Valerie
    Theis, Fabian J.
    Fisher, Jasmin
    Goettgens, Berthold
    NATURE BIOTECHNOLOGY, 2015, 33 (03) : 269 - +
  • [30] Deciphering single-cell gene expression variability and its role in drug response
    Liu, Sizhe
    Chen, Liang
    HUMAN MOLECULAR GENETICS, 2024, 33 (23) : 2024 - 2034