Effect of pressure on morphology of the grown layers of carbon nanotubes by modified plasma-enhanced chemical vapor deposition

被引:3
|
作者
Ganjipour, B
Mohajerzadeh, S [1 ]
Hesamzadeh, H
Khodadadi, A
机构
[1] Univ Tehran, Dept Elect & Comp Engn, Tehran, Iran
[2] Univ Tehran, Dept Chem Engn, Tehran, Iran
[3] Univ Kashan, NanoSciTech Ctr, Kashan, Iran
关键词
nanotube; PECVD; heat treatment; high pressures; catalyst;
D O I
10.1081/FST-200039354
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Synthesis of carbon nanotubes (CNTs) by a modified PECVD method under controlled pressure is reported. This modified tip-plate configuration allows one to investigate the effect of low and subatmospheric pressures on the morphology of the grown layers of nanotubes, which in turn simplifies the fabrication procedure. Using this method we have realized CNIs on silicon substrates at a temperature of 700 degrees C and gas pressures ranging from 10torr to 400torr. Tube diameter varies with the gas pressure and ranges from 25 nm to 250 nm in different samples. The density and preferred growth of CNTs increases essentially with the gas pressure. By controlling the gas pressure, CNTs have been realized in large quantities. Scanning electron microscopy (SEM) has been employed to study the morphology of the grown layers.
引用
收藏
页码:365 / 373
页数:9
相关论文
共 50 条
  • [21] Optical Properties of Carbon Films Obtained by Plasma-Enhanced Chemical Vapor Deposition
    Sha, Bo
    Lukianov, Anatolii
    Klyui, Mykola
    Dusheiko, Mykhailo
    Kasatkin, Vladislav
    Lozinskii, Volodymyr
    Yakymenko, Yuriy
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 365 - 368
  • [22] Optimization of plasma-enhanced chemical vapor deposition parameters for the growth of individual vertical carbon nanotubes as field emitters
    Loeffler, R.
    Haeffner, M.
    Visanescu, G.
    Weigand, H.
    Wang, X.
    Zhang, D.
    Fleischer, M.
    Meixner, A. J.
    Fortagh, J.
    Kern, D. P.
    CARBON, 2011, 49 (13) : 4197 - 4203
  • [23] Carbon nanofiber bundles grown by plasma enhanced chemical vapor deposition
    Shimoi, Norihiro
    Tanaka, Shun-ichiro
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2008, 9 (05): : 437 - 439
  • [24] Gallium Selenide Thin Films Grown on Silicon by Plasma-Enhanced Chemical Vapor Deposition
    Kudryashov, M. A.
    Mochalov, L. A.
    Kudryashova, Yu. P.
    Slapovskaya, E. A.
    HIGH ENERGY CHEMISTRY, 2024, 58 (04) : 440 - 445
  • [25] Modeling catalyst nucleation for carbon nanotube growth by chemical-vapor and plasma-enhanced chemical-vapor deposition methods
    Abdi, Yaser
    Mohajerzadeh, Shamsoddin
    Arzi, Ezatollah
    JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (02) : 521 - 528
  • [26] Modeling catalyst nucleation for carbon nanotube growth by chemical-vapor and plasma-enhanced chemical-vapor deposition methods
    Yaser Abdi
    Shamsoddin Mohajerzadeh
    Arzi Ezatollah
    Journal of Nanoparticle Research, 2010, 12 : 521 - 528
  • [27] Growth of carbon nanotubes by atmospheric pressure plasma enhanced chemical vapor deposition using NiCr catalyst
    Kyung, Se-Jin
    Voronko, Maksym
    Lee, Yong-Hyuk
    Kim, Chan-Woo
    Lee, June-Hee
    Yeom, Geun-Young
    SURFACE & COATINGS TECHNOLOGY, 2007, 201 (9-11) : 5378 - 5382
  • [28] Growth of Carbon Nanotubes on Metallic Substrates Using a Substrate-Shielded Microwave Plasma-Enhanced Chemical Vapor Deposition
    Lu, Fei-Lung
    Liao, Kun-Hou
    Ting, Jyh-Ming
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) : K50 - K54
  • [29] Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodes
    Haeffner, M.
    Schneider, K.
    Schuster, B. -E.
    Stamm, B.
    Latteyer, F.
    Fleischer, M.
    Burkhardt, C.
    Chasse, T.
    Stett, A.
    Kern, D. P.
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 734 - 737
  • [30] Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature
    Barankin, M. D.
    Gonzalez, E., II
    Ladwig, A. M.
    Hicks, R. F.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (10) : 924 - 930