Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol

被引:59
|
作者
Lee, Cho-Ryong [1 ,2 ]
Sung, Bong Hyun [1 ,2 ]
Lim, Kwang-Mook [1 ]
Kim, Mi-Jin [1 ]
Sohn, Min Jeong [1 ]
Bae, Jung-Hoon [1 ]
Sohn, Jung-Hoon [1 ,2 ]
机构
[1] KRIBB, Cell Factory Res Ctr, Daejeon 34141, South Korea
[2] Korea Univ Sci & Technol UST, KRIBB Sch Biotechnol, Dept Biosyst & Bioengn, Daejeon 34113, South Korea
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
新加坡国家研究基金会;
关键词
CELL-SURFACE DISPLAY; ETHANOL-PRODUCTION; BETA-GLUCOSIDASE; SIMULTANEOUS SACCHARIFICATION; LIGNOCELLULOSIC BIOMASS; POLYPEPTIDE CARRIER; TRICHODERMA-REESEI; HYDROLYSIS; EXPRESSION; CHALLENGES;
D O I
10.1038/s41598-017-04815-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera beta-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP+-dependent xylitol dehydrogenase
    Khattab, Sadat Mohammad Rezq
    Saimura, Masayuki
    Kodaki, Tsutomu
    JOURNAL OF BIOTECHNOLOGY, 2013, 165 (3-4) : 153 - 156
  • [42] The effects of different heating periods and exclusion of some fermentation conditions on bioethanol production from plantain pseudo-stem waste using the digestive juice of Archachatina marginata, garlic and Saccharomyces cerevisiae
    Amadi, P. U.
    Ifeanacho, M. O.
    Agomuo, E. N.
    BIOFUELS-UK, 2018, 9 (04): : 531 - 539
  • [43] Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain
    Yu, Jing
    Jiang, Jiaxi
    Ji, Wangming
    Li, Yuyang
    Liu, Jianping
    BIOTECHNOLOGY LETTERS, 2011, 33 (01) : 147 - 152
  • [44] Pilot-scale bioethanol production from the starch of avocado seeds using a combination of dilute acid-based hydrolysis and alcoholic fermentation by Saccharomyces cerevisiae
    Caballero-Sanchez, Luis
    Lazaro-Mixteco, Pedro E. E.
    Vargas-Tah, Alejandra
    Castro-Montoya, Agustin J.
    MICROBIAL CELL FACTORIES, 2023, 22 (01)
  • [45] Expression of a periplasmic β-glucosidase from Yarrowia lipolytica allows efficient cellobiose-xylose co-fermentation by industrial xylose-fermenting Saccharomyces cerevisiae strains
    Santos, Angela A.
    Kretzer, Leonardo G.
    Dourado, Erika D. R.
    Rosa, Carlos A.
    Stambuk, Boris U.
    Alves, Sergio L.
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2025, 56 (01) : 91 - 104
  • [46] Effect of different fermentation parameters on bioethanol production from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus
    Nikolic, Svetlana
    Mojovic, Ljiljana
    Rakin, Marica
    Pejin, Dusanka
    Nedovic, Viktor
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2009, 84 (04) : 497 - 503
  • [47] Production of Bioethanol from Rice Straw by Simultaneous Saccharification and Fermentation of Whole Pretreated Slurry Using Saccharomyces cerevisiae KF-7
    Wang, Gang
    Tan, Li
    Sun, Zhao-Yong
    Gou, Zi-Xi
    Tang, Yue-Qin
    Kida, Kenji
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2015, 34 (02) : 582 - 588
  • [48] Scale-up batch fermentation of bioethanol production from the dry powder of Jerusalem artichoke (Helianthus tuberosus L.) tubers by recombinant Saccharomyces cerevisiae
    Zou, Shanmei
    Wang, Yizhou
    He, Meilin
    Deng, Xiangyuan
    Wang, Changhai
    JOURNAL OF THE INSTITUTE OF BREWING, 2016, 122 (02) : 261 - 267
  • [49] Exploration of a natural reservoir of flocculating genes from various Saccharomyces cerevisiae strains and improved ethanol fermentation using stable genetically engineered flocculating yeast strains
    Zhao, Xin-Qing
    Li, Qian
    He, Lei-Yu
    Li, Fan
    Que, Wen-Wen
    Bai, Feng-Wu
    PROCESS BIOCHEMISTRY, 2012, 47 (11) : 1612 - 1619
  • [50] Optimization of simultaneous saccharification and fermentation in bioethanol production from sugarcane bagasse hydrolyse by Saccharomyces cerevisiae BTCC 3 using response surface methodology
    Thontowi, Ahmad
    Perwitasari, U.
    Kholida, L. N.
    Fahrurrozi
    Yopi
    Prasetya, B.
    INTERNATIONAL BIOTECHNOLOGY CONFERENCE ON ESTATE CROPS 2017, 2018, 183