PM2.5 Humic-like substances over Xi'an, China: Optical properties, chemical functional group, and source identification

被引:29
|
作者
Zhang, Tian [1 ]
Shen, Zhenxing [1 ]
Zhang, Leiming [3 ]
Tang, Zhuoyue [1 ]
Zhang, Qian [1 ]
Chen, Qingcai [4 ]
Lei, Yali [1 ]
Zeng, Yaling [1 ]
Xu, Hongmei [1 ]
Cao, Junji [2 ]
机构
[1] Xi An Jiao Tong Univ, Dept Environm Sci & Engn, Xian 710049, Peoples R China
[2] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710049, Peoples R China
[3] Environm & Climate Change Canada, Sci & Technol Branch, Air Qual Res Div, Toronto, ON, Canada
[4] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Humic-like substances; Optical properties; Chemical groups; Sources; SOLUBLE ORGANIC-MATTER; LIGHT-ABSORPTION PROPERTIES; RIVER DELTA REGION; SEASONAL-VARIATIONS; BROWN CARBON; ATMOSPHERIC AEROSOLS; PARTICULATE MATTER; MOLECULAR-WEIGHT; GUANZHONG PLAIN; AMBIENT AEROSOLS;
D O I
10.1016/j.atmosres.2019.104784
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Humic-like substances (HULIS) in fine particulate matter (PM2.5) were investigated during May 2015 to January 2016 in an urban environment in Xi'an, China. UV-VIS spectrometer and Fourier transform infrared spectroscopy (FTIR) were used to investigate optical properties and chemical structures of HULIS. Annual mean concentrations of HULIS-C (the carbon content of HULIS) was 2.9 +/- 2.1 mu g m(-3). On average, the contributions of HULIS-C to PM2.5, TC, and OC were 6.1%, 27.2%, and 34.5%, respectively. Seasonal average of HULIS-C concentration followed a decreasing order of winter, spring, summer, and autumn. The UV absorption intensity of PM2.5 HULIS showed the highest in winter and the lowest in summer. The chemical functional groups for PM2.5 HULIS were highlighted with the presence of aliphatic C-H, hydroxy, carbonyl, carboxyl and aromatic rings structures. SUVA(254) and SUVA(280) values in autumn and winter exhibited more dispersive distribution than those in spring and summer, which indicated sources of HULIS in autumn and winter samples were relative complicated. The E-2/E-3 ratio showed a summer maximum and a winter minimum, indicating greater conjugation and aromaticity of HULIS in winter. In addition, strong correlations between HULIS-C with K+ and OC1 + OP2 in spring, autumn and especially winter implied the important source of biomass burning to PM2.5 HULIS. The C-O stretching of COH, carbonyl groups (C=O) and O-H stretching of carboxylic acid were abundance both in winter and summer, implied that secondary organic aerosol (SOA) formation was found to be the dominant mechanism producing HULIS in Xi'an.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Chemical Composition and Source Apportionment of PM2.5 in a Border City in Southwest China
    Shi, Jianwu
    Zhao, Chenyang
    Wang, Zhijun
    Pang, Xiaochen
    Zhong, Yaoqian
    Han, Xinyu
    Ning, Ping
    ATMOSPHERE, 2022, 13 (01)
  • [32] pH-Dependent Chemical Transformations of Humic-Like Substances and Further Cognitions Revealed by Optical Methods
    Qin, Juanjuan
    Zhang, Leiming
    Qin, Yuanyuan
    Shi, Shaoxuan
    Li, Jingnan
    Gao, Yuwei
    Tan, Jihua
    Wang, Xinming
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (12) : 7578 - 7587
  • [33] Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou,China
    Xionghui Qiu
    Lei Duan
    Jian Gao
    Shulan Wang
    Fahe Chai
    Jun Hu
    Jingqiao Zhang
    Yaru Yun
    Journal of Environmental Sciences, 2016, 40 (02) : 75 - 83
  • [34] Seasonal characteristics of chemical compositions and sources identification of PM2.5 in Zhuhai, China
    Liang, Zuobing
    Zhao, Xinfeng
    Chen, Jianyao
    Gao, Lei
    Zhu, Aiping
    Wang, Zhuowei
    Li, Shaoheng
    Shan, Jiju
    Long, Yuemin
    Yan, Chang
    Zhang, Kai
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2019, 41 (02) : 715 - 728
  • [35] Size-Segregated Atmospheric Humic-Like Substances (HULIS) in Shanghai: Abundance, Seasonal Variation, and Source Identification
    Sun, Tianming
    Li, Rui
    Meng, Ya
    Han, Yu
    Cheng, Hanyun
    Fu, Hongbo
    ATMOSPHERE, 2021, 12 (05)
  • [36] Saccharides in summer and winter PM2.5 over Xi'an, Northwestern China: Sources, and yearly variations of biomass burning contribution to PM2.5
    Wang, Xin
    Shen, Zhenxing
    Liu, Fobang
    Lu, Di
    Tao, Jun
    Lei, Yali
    Zhang, Qian
    Zeng, Yaling
    Xu, Hongmei
    Wu, Yunfei
    Zhang, Renjian
    Cao, Junji
    ATMOSPHERIC RESEARCH, 2018, 214 : 410 - 417
  • [37] Chemical Characterization and Source Apportionment of PM2.5 during Spring and Winter in the Yangtze River Delta, China
    Du, Wenjiao
    Zhang, Yanru
    Chen, Yanting
    Xu, Lingling
    Chen, Jinsheng
    Deng, Junjun
    Hong, Youwei
    Xiao, Hang
    AEROSOL AND AIR QUALITY RESEARCH, 2017, 17 (09) : 2165 - 2180
  • [38] Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China
    Liu, Gang
    Li, Jiuhai
    Wu, Dan
    Xu, Hui
    PARTICUOLOGY, 2015, 18 : 135 - 143
  • [39] Abundance, chemical structure, and light absorption properties of humic-like substances (HULIS) and other organic fractions of forest aerosols in Hokkaido
    Afsana, Sonia
    Zhou, Ruichen
    Miyazaki, Yuzo
    Tachibana, Eri
    Deshmukh, Dhananjay Kumar
    Kawamura, Kimitaka
    Mochida, Michihiro
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [40] Inter-annual variability of wintertime PM2.5 chemical composition in Xi'an, China: Evidences of changing source emissions
    Xu, Hongmei
    Cao, Junji
    Chow, Judith C.
    Huang, R-J.
    Shen, Zhenxing
    Chen, L. W. Antony
    Ho, Kin Fai
    Watson, John G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 545 : 546 - 555