Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland

被引:109
|
作者
Annunziato, Stefano [1 ]
Kas, Sjors M. [1 ]
Nethe, Micha [1 ]
Yucel, Hatice [1 ]
Del Bravo, Jessica [2 ]
Pritchard, Colin [2 ]
Bin Ali, Rahmen [2 ]
van Gerwen, Bas [3 ]
Siteur, Bjorn [3 ]
Drenth, Anne Paulien [1 ]
Schut, Eva [1 ]
van de Ven, Marieke [3 ]
Boelens, Mirjam C. [1 ]
Klarenbeek, Sjoerd [4 ]
Huijbers, Ivo J. [2 ]
van Miltenburg, Martine H. [1 ]
Jonkers, Jos [1 ,5 ]
机构
[1] Netherlands Canc Inst, Dept Mol Pathol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Netherlands Canc Inst, MCCA, Transgen Core Facil, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst, MCCA, Preclin Intervent Unit, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[4] Netherlands Canc Inst, Expt Anim Pathol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[5] Netherlands Canc Inst, Canc Genom Netherlands, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
somatic gene editing; breast cancer; invasive lobular carcinoma; CRISPR/Cas9; intraductal injection; mouse models; E-CADHERIN; MOUSE MODEL; EXPRESSION; MICE; VECTORS; TUMORIGENESIS; INACTIVATION; ACTIVATION; RESISTANCE; MIGRATION;
D O I
10.1101/gad.279190.116
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.
引用
收藏
页码:1470 / 1480
页数:11
相关论文
共 50 条
  • [31] Induce male sterility by CRISPR/Cas9-mediated mitochondrial genome editing in tobacco
    Chang, Yanzi
    Liu, Baolong
    Jiang, Yanyan
    Cao, Dong
    Liu, Yongju
    Li, Yun
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2023, 23 (03)
  • [32] A simple and efficient cloning system for CRISPR/Cas9-mediated genome editing in rice
    Liu, Xiaoli
    Zhou, Xiujuan
    Li, Kang
    Wang, Dehong
    Ding, Yuanhao
    Liu, Xianqing
    Luo, Jie
    Fang, Chuanying
    PEERJ, 2020, 8
  • [33] CRISPR/Cas9-Mediated Genome Editing of Herpesviruses Limits Productive and Latent Infections
    van Diemen, Ferdy R.
    Kruse, Elisabeth M.
    Hooykaas, Marjolein J. G.
    Bruggeling, Carlijn E.
    Schurch, Anita C.
    van Ham, Petra M.
    Imhof, Saskia M.
    Nijhuis, Monique
    Wiertz, Emmanuel J. H. J.
    Lebbink, Robert Jan
    PLOS PATHOGENS, 2016, 12 (06)
  • [34] CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in Brassica napus L.
    Zaman, Qamar U.
    Chu, Wen
    Hao, Mengyu
    Shi, Yuqin
    Sun, Mengdan
    Sang, Shi-Fei
    Mei, Desheng
    Cheng, Hongtao
    Liu, Jia
    Li, Chao
    Hu, Qiong
    BIOMOLECULES, 2019, 9 (11)
  • [35] Progress and Updates of CRISPR/Cas9-Mediated Genome Editing on Abiotic Stress Tolerance in Agriculture: A Review
    Murugavelu, Girija Sangari
    Chandar, S. R. Harish
    Sakthivel, Surya Krishna
    Ramaswamy, Manimekalai
    Swaminathan, Amutha
    Chinnaswamy, Appunu
    SUGAR TECH, 2025, 27 (01) : 29 - 43
  • [36] CRISPR/Cas9-mediated genome engineering of the ferret
    Kou, Zhaohui
    Wu, Qian
    Kou, Xiaochen
    Yin, Chonghai
    Wang, Hong
    Zuo, Zhentao
    Zhuo, Yan
    Chen, Antony
    Gao, Shaorong
    Wang, Xiaoqun
    CELL RESEARCH, 2015, 25 (12) : 1372 - 1375
  • [37] CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein
    Tang, Lichun
    Zeng, Yanting
    Du, Hongzi
    Gong, Mengmeng
    Peng, Jin
    Zhang, Buxi
    Lei, Ming
    Zhao, Fang
    Wang, Weihua
    Li, Xiaowei
    Liu, Jianqiao
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (03) : 525 - 533
  • [38] An oocyte-specific Cas9-expressing mouse for germline CRISPR/Cas9-mediated genome editing
    Lanza, Denise G.
    Mao, Jianqiang
    Lorenzo, Isabel
    Liao, Lan
    Seavitt, John R.
    Ljungberg, M. Cecilia
    Simpson, Elizabeth M.
    Demayo, Francesco J.
    Heaney, Jason D.
    GENESIS, 2024, 62 (02)
  • [39] CRISPR/Cas9-mediated genome engineering of CXCR4 decreases the malignancy of hepatocellular carcinoma cells in vitro and in vivo
    Wang, Xiaoli
    Zhang, Wenmei
    Ding, Yan
    Guo, Xingrong
    Yuan, Yahong
    Li, Dongsheng
    ONCOLOGY REPORTS, 2017, 37 (06) : 3565 - 3571
  • [40] GFP to BFP Conversion: A Versatile Assay for the Quantification of CRISPR/Cas9-mediated Genome Editing
    Glaser, Astrid
    McColl, Bradley
    Vadolas, Jim
    MOLECULAR THERAPY-NUCLEIC ACIDS, 2016, 5