Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland

被引:109
|
作者
Annunziato, Stefano [1 ]
Kas, Sjors M. [1 ]
Nethe, Micha [1 ]
Yucel, Hatice [1 ]
Del Bravo, Jessica [2 ]
Pritchard, Colin [2 ]
Bin Ali, Rahmen [2 ]
van Gerwen, Bas [3 ]
Siteur, Bjorn [3 ]
Drenth, Anne Paulien [1 ]
Schut, Eva [1 ]
van de Ven, Marieke [3 ]
Boelens, Mirjam C. [1 ]
Klarenbeek, Sjoerd [4 ]
Huijbers, Ivo J. [2 ]
van Miltenburg, Martine H. [1 ]
Jonkers, Jos [1 ,5 ]
机构
[1] Netherlands Canc Inst, Dept Mol Pathol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Netherlands Canc Inst, MCCA, Transgen Core Facil, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst, MCCA, Preclin Intervent Unit, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[4] Netherlands Canc Inst, Expt Anim Pathol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[5] Netherlands Canc Inst, Canc Genom Netherlands, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
somatic gene editing; breast cancer; invasive lobular carcinoma; CRISPR/Cas9; intraductal injection; mouse models; E-CADHERIN; MOUSE MODEL; EXPRESSION; MICE; VECTORS; TUMORIGENESIS; INACTIVATION; ACTIVATION; RESISTANCE; MIGRATION;
D O I
10.1101/gad.279190.116
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.
引用
收藏
页码:1470 / 1480
页数:11
相关论文
共 50 条
  • [21] CRISPR/Cas9-mediated genome editing of phytoene desaturase in Carica papaya L
    Brewer, Sarah E.
    Chambers, Alan H.
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2022, 97 (05): : 580 - 592
  • [22] Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Leishmania Strains
    Ghavidel, Afshin Abdi
    Aghamiri, Shahin
    Raee, Pourya
    Mohammadi-Yeganeh, Samira
    Noori, Effat
    Bandehpour, Mojgan
    Kazemi, Bahram
    Jajarmi, Vahid
    ACTA PARASITOLOGICA, 2024, 69 (01) : 121 - 134
  • [23] CRISPR/Cas9-mediated genome editing in a reef-building coral
    Clevesa, Phillip A.
    Strader, Marie E.
    Bay, Line K.
    Pringle, John R.
    Matz, Mikhail V.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (20) : 5235 - 5240
  • [24] Engineering TGMS in rice through CRISPR/Cas9-mediated genome editing
    Shanthinie, A.
    Varanavasiappan, S.
    Kumar, K. K.
    Arul, L.
    Meenakshisundaram, P.
    Harish, N.
    Shekhar, Shweta
    Sakthivel, Kausalya
    Manonmani, S.
    Jeyakumar, P.
    Banumathy, S.
    Kokiladevi, E.
    Sudhakar, D.
    CEREAL RESEARCH COMMUNICATIONS, 2024,
  • [25] Valproic Acid Significantly Improves CRISPR/Cas9-Mediated Gene Editing
    Park, Hanseul
    Shin, Jaein
    Choi, Hwan
    Cho, Byounggook
    Kim, Jongpil
    CELLS, 2020, 9 (06) : 1 - 13
  • [26] Lentiviral CRISPR/Cas9-Mediated Genome Editing for the Study of Hematopoietic Cells in Disease Models
    Sano, Soichi
    Wang, Ying
    Evans, Megan A.
    Yura, Yoshimitsu
    Sano, Miho
    Ogawa, Hayato
    Horitani, Keita
    Doviak, Heather
    Walsh, Kenneth
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (152):
  • [27] CRISPR/Cas9-Mediated Genome Editing and Mutagenesis of EcChi4 in Exopalaemon carinicauda
    Gui, Tianshu
    Zhang, Jiquan
    Song, Fengge
    Sun, Yuying
    Xie, Shijun
    Yu, Kuijie
    Xiang, Jianhai
    G3-GENES GENOMES GENETICS, 2016, 6 (11): : 3757 - 3764
  • [28] CRISPR/Cas9-mediated noncoding RNA editing in human cancers
    Yang, Jie
    Meng, Xiaodan
    Pan, Jinchang
    Jiang, Nan
    Zhou, Chengwei
    Wu, Zhenhua
    Gong, Zhaohui
    RNA BIOLOGY, 2018, 15 (01) : 35 - 43
  • [29] Dynamics of CRISPR/Cas9-mediated genomic editing of the AXL locus in hepatocellular carcinoma cells
    Scharf, Irene
    Bierbaumer, Lisa
    Huber, Heidemarie
    Wittmann, Philipp
    Haider, Christine
    Pirker, Christine
    Berger, Walter
    Mikulits, Wolfgang
    ONCOLOGY LETTERS, 2018, 15 (02) : 2441 - 2450
  • [30] CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes
    Liang, Puping
    Xu, Yanwen
    Zhang, Xiya
    Ding, Chenhui
    Huang, Rui
    Zhang, Zhen
    Lv, Jie
    Xie, Xiaowei
    Chen, Yuxi
    Li, Yujing
    Sun, Ying
    Bai, Yaofu
    Songyang, Zhou
    Ma, Wenbin
    Zhou, Canquan
    Huang, Junjiu
    PROTEIN & CELL, 2015, 6 (05) : 363 - 372