Fourier-Bessel beams of finite energy

被引:12
|
作者
Kotlyar, V. V. [1 ,2 ]
Kovalev, A. A. [1 ,3 ]
Kalinkina, D. S. [3 ]
Kozlova, E. S. [1 ,2 ]
机构
[1] FSRC Crystallog & Photon RAS, IPSI RAS, Molodogvardeyskaya 151, Samara 443001, Russia
[2] Samara Natl Res Univ, Comp Sci Dept, Moskovskoye Shosse 34, Samara 443086, Russia
[3] Samara Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
optical vortices; Fourier-invariant beams; Bessel beams; OPTICAL-FIELDS;
D O I
10.18287/2412-6179-CO-864
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we consider a new type of Bessel beams having Fourier-invariance property and, therefore, called Fourier-Bessel beams. In contrast to the known Bessel beams, these beams have weak side lobes. Analytical expressions for the complex amplitude of the proposed field in the initial plane of the source and in the far field region have been obtained. It is shown that the proposed Fourier-Bessel beams have a finite energy, although they do not have a Gaussian envelope. Their complex amplitude is proportional to a fractional-order Bessel function (an odd integer divided by 6) in the initial plane and in the Fraunhofer zone. The Fourier-Bessel modes have a smaller internal dark spot compared to the Laguerre-Gauss modes with a zero radial index. The proposed beams can be generated with a spatial light modulator and may find uses in telecommunications, interferometry, and the capture of metal microparticles.
引用
收藏
页码:506 / +
页数:8
相关论文
共 50 条
  • [41] Several variable Fourier-Bessel transcendents.
    Akimoff, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1917, 165 : 23 - 25
  • [42] Estimates for the Fourier-Bessel transforms of multivariate functions
    V. A. Abilov
    M. K. Kerimov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 836 - 845
  • [43] Strong annihilating pairs for the Fourier-Bessel transform
    Ghobber, Saifallah
    Jaming, Philippe
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) : 501 - 515
  • [44] Estimates for the Fourier-Bessel transforms of multivariate functions
    Abilov, V. A.
    Kerimov, M. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (06) : 836 - 845
  • [45] FOURIER-BESSEL ANALYSIS OF POLARIZED DEUTERON SCATTERING
    CLEMENT, H
    LECTURE NOTES IN PHYSICS, 1985, 236 : 324 - 334
  • [46] Fourier-Bessel analysis of patterns in a circular domain
    Guan, SG
    Lai, CH
    Wei, GW
    PHYSICA D, 2001, 151 (2-4): : 83 - 98
  • [47] Photonic quasi-crystals in Fourier and Fourier-Bessel space
    Newman, S. R.
    Gauthier, R. C.
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES III, 2013, 8632
  • [48] SOLUTION OF SECTOR PLATE BY FOURIER-BESSEL SERIES
    钱民刚
    严宗达
    Applied Mathematics and Mechanics(English Edition), 1985, (04) : 367 - 385
  • [49] Face Recognition Based on Fourier-Bessel Transformation
    Gao, Dali
    Cai, Zhaoquan
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 4127 - 4130
  • [50] Speech analysis using Fourier-Bessel expansion and discrete energy separation algorithm
    Bilas Pachori, Ram
    Sircar, Pradip
    2006 IEEE 12TH DIGITAL SIGNAL PROCESSING WORKSHOP & 4TH IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, 2006, : 423 - 428