Fourier-Bessel beams of finite energy

被引:12
|
作者
Kotlyar, V. V. [1 ,2 ]
Kovalev, A. A. [1 ,3 ]
Kalinkina, D. S. [3 ]
Kozlova, E. S. [1 ,2 ]
机构
[1] FSRC Crystallog & Photon RAS, IPSI RAS, Molodogvardeyskaya 151, Samara 443001, Russia
[2] Samara Natl Res Univ, Comp Sci Dept, Moskovskoye Shosse 34, Samara 443086, Russia
[3] Samara Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
optical vortices; Fourier-invariant beams; Bessel beams; OPTICAL-FIELDS;
D O I
10.18287/2412-6179-CO-864
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we consider a new type of Bessel beams having Fourier-invariance property and, therefore, called Fourier-Bessel beams. In contrast to the known Bessel beams, these beams have weak side lobes. Analytical expressions for the complex amplitude of the proposed field in the initial plane of the source and in the far field region have been obtained. It is shown that the proposed Fourier-Bessel beams have a finite energy, although they do not have a Gaussian envelope. Their complex amplitude is proportional to a fractional-order Bessel function (an odd integer divided by 6) in the initial plane and in the Fraunhofer zone. The Fourier-Bessel modes have a smaller internal dark spot compared to the Laguerre-Gauss modes with a zero radial index. The proposed beams can be generated with a spatial light modulator and may find uses in telecommunications, interferometry, and the capture of metal microparticles.
引用
收藏
页码:506 / +
页数:8
相关论文
共 50 条
  • [31] Hardy spaces for Fourier-Bessel expansions
    Jacek Dziubański
    Marcin Preisner
    Luz Roncal
    Pablo Raúl Stinga
    Journal d'Analyse Mathématique, 2016, 128 : 261 - 287
  • [32] A fast Fourier-Bessel transformation algorithm
    Zhileikin, YM
    Kukarkin, AB
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1995, 35 (07) : 901 - 905
  • [33] Fourier-Bessel expansions with general boundary conditions
    Pinsky, MA
    ANALYSIS OF DIVERGENCE: CONTROL AND MANAGEMENT OF DIVERGENT PROCESSES, 1999, : 107 - 115
  • [34] Galaxy bispectrum in the spherical Fourier-Bessel basis
    Benabou, Joshua N.
    Testa, Adriano
    Heinrich, Chen
    Gebhardt, Henry S. Grasshorn
    Dore, Olivier
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [35] Dual and triple Fourier-Bessel series equations
    Malits, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 823 - 831
  • [36] Fourier-Bessel representation for signal processing: A review
    Chaudhary, Pradeep Kumar
    Gupta, Vipin
    Pachori, Ram Bilas
    DIGITAL SIGNAL PROCESSING, 2023, 135
  • [37] On partial Fourier-Bessel operator in higher dimension
    Negzaoui, Selma
    Sifi, Mohamed
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (06) : 424 - 436
  • [38] Transplantation and multiplier theorems for Fourier-Bessel expansions
    Ciaurri, Oscar
    Stempak, Krzysztof
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (10) : 4441 - 4465
  • [39] Fabulous code for spherical Fourier-Bessel decomposition
    Gebhardt, Henry S. Grasshorn
    Dore, Olivier
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [40] Fourier-Bessel series neural networks for classification
    Huang, Li-Jeng
    Chen, Shyh-Haur
    Le, Duc-Hien
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 802 - 808