New concepts for linear beam theory with arbitrary geometry and loading

被引:85
作者
Ladeveze, P [1 ]
Simmonds, J
机构
[1] Univ Paris 06, ENS Cachan, CNRS, Lab Mecan & Technol, F-75252 Paris 05, France
[2] Univ Virginia, Dept Civil Engn, Charlottesville, VA USA
关键词
D O I
10.1016/S0997-7538(98)80051-X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new approach is introduced for the analysis and calculation of straight prismatic beams of piecewise constant cross-section under arbitrary loads. This theory can be called "exact" because it determines exact static and kinematic generalized quantities. Moreover, contrary to classical theories, it is not limited to high-aspect ratio (i.e. relatively slender) beams. (C) Elsevier, Paris.
引用
收藏
页码:377 / 402
页数:26
相关论文
共 19 条
[1]  
ALMANSI E, 1901, REND ACCAD LINCEI, V5, P400
[2]  
CLARLET PG, 1990, RMA, V14
[3]  
Duvaut D., 1976, Inequalities in Mechanics and Physics
[4]   STATUS OF ST VENANTS SOLUTIONS AS MINIMIZERS OF ENERGY [J].
ERICKSEN, JL .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1980, 16 (03) :195-198
[5]   SAINT-VENANT END EFFECTS IN COMPOSITE STRUCTURES [J].
HORGAN, CO ;
SIMMONDS, JG .
COMPOSITES ENGINEERING, 1994, 4 (03) :279-286
[6]  
Horgan CO., 1989, APPL MECH REV, V42, P295, DOI DOI 10.1115/1.3152414
[7]   ON THE THEORY OF UNIFORMLY LOADED CYLINDERS [J].
IESAN, D .
JOURNAL OF ELASTICITY, 1986, 16 (04) :375-382
[8]  
LADEVEZE J, 1980, J MECANIQUE 2, V19, P1
[9]  
LADEVEZE J, 1979, J MECANIQUE 1, V28, P129
[10]  
Ladeveze P, 1996, CR ACAD SCI II B, V322, P455