Quantifying restoration success and recovery in a metal-polluted stream: a 17-year assessment of physicochemical and biological responses

被引:53
作者
Clements, William H. [1 ]
Vieira, Nicole K. M. [2 ]
Church, Stanley E. [3 ]
机构
[1] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80521 USA
[2] Colorado Div Wildlife, Ft Collins, CO 80526 USA
[3] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA
关键词
benthic macroinvertebrates; ecological resistance and resilience; heavy metals; long-term assessment; recovery; restoration effectiveness; Salmo trutta; DISSOLVED ORGANIC MATERIAL; BENTHIC COMMUNITIES; HEAVY-METALS; LONG-TERM; MACROINVERTEBRATE COMMUNITY; INVERTEBRATE COMMUNITIES; CAUSAL RELATIONSHIPS; MOUNTAIN STREAMS; CLIMATE-CHANGE; UV-B;
D O I
10.1111/j.1365-2664.2010.01838.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
P>1. Evaluating the effectiveness of stream restoration is often challenging because of the lack of pre-treatment data, narrow focus on physicochemical measures and insufficient post-restoration monitoring. Even when these fundamental elements are present, quantifying restoration success is difficult because of the challenges associated with distinguishing treatment effects from seasonal variation, episodic events and long-term climatic changes. 2. We report results of one of the most comprehensive and continuous records of physical, chemical and biological data available to assess restoration success for a stream ecosystem in North America. Over a 17 year period we measured seasonal and annual changes in metal concentrations, physicochemical characteristics, macroinvertebrate communities, and brown trout Salmo trutta populations in the Arkansas River, a metal-contaminated stream in Colorado, USA. 3. Although we observed significant improvements in water quality after treatment, the effectiveness of restoration varied temporally, spatially and among biological response variables. The fastest recovery was observed at stations where restoration eliminated point sources of metal contamination. Recovery of macroinvertebrates was significantly delayed at some stations because of residual sediment contamination and because extreme seasonal and episodic variation in metal concentrations prevented recolonization by sensitive species. 4. Synthesis and applications. Because recovery trajectories after the removal of a stressor are often complex or nonlinear, long-term studies are necessary to assess restoration success within the context of episodic events and changes in regional climate. The observed variation in recovery among chemical and biological endpoints highlights the importance of developing objective criteria to assess restoration success. Although the rapid response of macroinvertebrates to reduced metal concentrations is encouraging, we have previously demonstrated that benthic communities from the Arkansas River remained susceptible to other novel anthropogenic stressors. We suggest that the resistance or resilience of benthic macroinvertebrate communities to novel stressors may be effective indicators of restoration success that can account for the non-additive (e.g. synergistic) nature of compound perturbations.
引用
收藏
页码:899 / 910
页数:12
相关论文
共 56 条
  • [1] Recovery in diversity of fish and invertebrate communities following remediation of a polluted stream: investigating causal relationships
    Adams, SM
    Ryon, MG
    Smith, JG
    [J]. HYDROBIOLOGIA, 2005, 542 (1) : 77 - 93
  • [2] [Anonymous], 2005, Ecosystems and Human Well being synthesis
  • [3] Behnke R.T., 2002, Trout and salmon of North America
  • [4] Confronting the coral reef crisis
    Bellwood, DR
    Hughes, TP
    Folke, C
    Nystrom, M
    [J]. NATURE, 2004, 429 (6994) : 827 - 833
  • [5] Ecology - Synthesizing US river restoration efforts
    Bernhardt, ES
    Palmer, MA
    Allan, JD
    Alexander, G
    Barnas, K
    Brooks, S
    Carr, J
    Clayton, S
    Dahm, C
    Follstad-Shah, J
    Galat, D
    Gloss, S
    Goodwin, P
    Hart, D
    Hassett, B
    Jenkinson, R
    Katz, S
    Kondolf, GM
    Lake, PS
    Lave, R
    Meyer, JL
    O'Donnell, TK
    Pagano, L
    Powell, B
    Sudduth, E
    [J]. SCIENCE, 2005, 308 (5722) : 636 - 637
  • [6] Recovery without resilience: persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea
    Berumen, Michael L.
    Pratchett, Morgan S.
    [J]. CORAL REEFS, 2006, 25 (04) : 647 - 653
  • [7] Photochemical control of copper complexation by dissolved organic matter in Rocky Mountain streams, Colorado
    Brooks, Marjorie L.
    McKnight, Diane M.
    Clements, William H.
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2007, 52 (02) : 766 - 779
  • [8] Burnham K.P., 1998, MODEL SELECTION INFE
  • [9] Burton G.A., 1992, Sediment Toxicity Assessment
  • [10] The use of in situ and stream microcosm experiments to assess population- and community-level responses to metals
    Clark, Jeffrey L.
    Clements, William H.
    [J]. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2006, 25 (09) : 2306 - 2312