Realization Theory for LPV State-Space Representations With Affine Dependence

被引:15
作者
Petreczky, Mihaly [1 ]
Toth, Roland [3 ]
Mercere, Guillaume [2 ]
机构
[1] Ctr Rech Informat Signal & Automat Lille, CRIStAL, Cent Lille, CNRS, F-59000 Lille, France
[2] Eindhoven Univ Technol, Control Syst Grp, Dept Elect Engn, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Univ Poitiers, Lab Informat Automat Syst, 2 Rue P Brousse,Batiment B25,BP 633, F-86022 Poitiers, France
关键词
Linear-parameter varying systems; realization theory; minimality; hankel-matrix; IDENTIFICATION; SYSTEMS; SERIES;
D O I
10.1109/TAC.2016.2629989
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a Kalman-style realization theory for linear parameter-varying state-space representations whose matrices depend on the scheduling variables in an affine way (abbreviated as LPV-SSA). We show that minimality of LPV-SSAs is equivalent to observability and span-reachability rank conditions, and that minimal LPV-SSAs of the same input-output map are isomorphic. We present necessary and sufficient conditions for existence of an LPV-SSA in terms of the rank of a Hankel-matrix and a Ho-Kalman-like realization algorithm.
引用
收藏
页码:4667 / 4674
页数:8
相关论文
共 50 条
  • [31] Combining Linear Algebra and Numerical Optimization for Gray-Box Affine State-Space Model Identification
    Prot, Olivier
    Mercere, Guillaume
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (08) : 3272 - 3285
  • [32] Estimation of affine LPV state space models in the frequency domain: extension to transient behavior and non-periodic inputs
    Goos, Jan
    Lataire, John
    Pintelon, Rik
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 824 - 829
  • [33] Structured state-space models are deep Wiener modelsStructured state-space models are deep Wiener models
    Bonassi, Fabio
    Andersson, Carl
    Mattsson, Per
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2024, 58 (15): : 247 - 252
  • [34] Identification of structured state-space models
    Yu, Chengpu
    Ljung, Lennart
    Verhaegen, Michel
    AUTOMATICA, 2018, 90 : 54 - 61
  • [35] Decomposition of a state-space model with inputs
    Casals, Jose
    Jerez, Miguel
    Sotoca, Sonia
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (09) : 979 - 992
  • [36] A Generalized State-Space Aeroservoelastic Model Based on Tangential Interpolation
    Quero, David
    Vuillemin, Pierre
    Poussot-Vassal, Charles
    AEROSPACE, 2019, 6 (01)
  • [37] Probabilistic Monitoring of Sensors in State-Space With Variational Bayesian Inference
    Zhao, Shunyi
    Ma, Yanjun
    Huang, Biao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (03) : 2154 - 2163
  • [38] Predictive Control of Fractional State-space Model
    Hcheichi, Khaled
    Bouani, Faouzi
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 499 - 504
  • [39] The innovation algorithms for multivariable state-space models
    Ding, Feng
    Zhang, Xiao
    Xu, Ling
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2019, 33 (11) : 1601 - 1618
  • [40] Cointegrated continuous-time linear state-space and MCARMA models
    Fasen-Hartmann, Vicky
    Scholz, Markus
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (07) : 1064 - 1099