Bi2O3 Induced Ultralong Cycle Lifespan and High Capacity of MnO2 Nanotube Cathodes in Aqueous Zinc-Ion Batteries

被引:24
作者
Gou, Lei [1 ]
Zhao, Shao-Pan [1 ]
Wang, Wen-Qi [1 ]
Xu, Lei [1 ]
Wang, Wen-Yan [1 ]
Wu, Jun [1 ]
Ma, Zhe-Fan [1 ]
Fan, Xiaoyong [1 ]
Li, Dong-Lin [1 ]
机构
[1] Changan Univ, Inst Energy Mat & Device, Sch Mat Sci & Engn, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
aqueous Zn-ion battery; cathode; MnO2; Bi2O3; cycling stability; AB-INITIO; ALPHA-MNO2; PERFORMANCE; STORAGE; COMPOSITE; MECHANISM; DISCHARGE;
D O I
10.1021/acsaem.1c01495
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MnO2 is regarded as a promising cathode for aqueous rechargeable zinc-ion batteries (ARZBs) due to its high theoretical capacity and high voltage. However, it still faces unsatisfied long-term cycling durability due to the John-Teller effect and the formation of the irreversible phase during cycling. Herein, this issue is addressed by constructing a hybrid cathode with a facile commercial strategy involving a uniform mixture of Bi2O3 and MnO2 nanotubes. The multiple effects of adding Bi2O3 are deeply revealed by means of the electrochemical kinetics test, charge-discharge mechanism investigation, phase and structural evolution analyses, as well as density functional theory (DFT) calculations. It is found that the in situ-formed Bi3+ can not only enhance the structural stability and alleviate the dissolution of Mn3+ by forming Mn-O bonds with MnO2, but also lead to better transport kinetics of Zn2+ by the competitive formation of Bi2Mn4O10 that can inhibit the irreversible ZnMn2O4 produced during the repeated H+ and Zn2+ coinsertion/extraction process. Moreover, the tunnel-like Bi2Mn4O10 can contribute an additional capacity by the insertion of H+. Benefiting from these, the MnO2/Bi2O3 hybrid cathode delivers high capacities of 120 and 80 mAh g(-1) even after 5000 cycles at the current densities of 3000 and 10 000 mA g(-1), respectively. This design provides an effective and scalable pathway to enhance the electrochemical performance of the MnO2 cathode and may speed up the commercial application of ARZBs.
引用
收藏
页码:7355 / 7364
页数:10
相关论文
共 55 条
  • [1] Charge storage capability of tunnel MnO2 and alkaline layered Na-MnO2 as anode material for aqueous asymmetry supercapacitor
    Abd Aziz, Radhiyah
    Jose, Rajan
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 799 : 538 - 546
  • [2] Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System
    Alfaruqi, Muhammad H.
    Mathew, Vinod
    Gim, Jihyeon
    Kim, Sungjin
    Song, Jinju
    Baboo, Joseph P.
    Choi, Sun H.
    Kim, Jaekook
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (10) : 3609 - 3620
  • [3] A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications
    Alfaruqi, Muhammad Hilmy
    Gim, Jihyeon
    Kim, Sungjin
    Song, Jinju
    Duong Tung Pham
    Jo, Jeonggeun
    Xiu, Zhiliang
    Mathew, Vinod
    Kim, Jaekook
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 : 121 - 125
  • [4] Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode
    Alfaruqi, Muhammad Hilmy
    Gim, Jihyeon
    Kim, Sungjin
    Song, Jinju
    Jo, Jeonggeun
    Kim, Seokhun
    Mathew, Vinod
    Kim, Jaekook
    [J]. JOURNAL OF POWER SOURCES, 2015, 288 : 320 - 327
  • [5] Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance
    Bi, S.
    Wu, Y.
    Cao, A.
    Tian, J.
    Zhang, S.
    Niu, Z.
    [J]. MATERIALS TODAY ENERGY, 2020, 18
  • [6] Rechargeability of MnO2 in KOH media produced by decomposition of dissolved KMnO4 and Bi(NO3)(3) mixtures .1. Mn-Bi complexes
    Bode, M
    Cachet, C
    Bach, S
    PereiraRamos, JP
    Ginoux, JC
    Yu, LT
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (03) : 792 - 801
  • [7] Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery
    Cai, Yi
    Chua, Rodney
    Huang, Shaozhuan
    Ren, Hao
    Srinivasan, Madhavi
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 396
  • [8] Roadmap for advanced aqueous batteries: From design of materials to applications
    Chao, Dongliang
    Zhou, Wanhai
    Xie, Fangxi
    Ye, Chao
    Li, Huan
    Jaroniec, Mietek
    Qiao, Shi-Zhang
    [J]. SCIENCE ADVANCES, 2020, 6 (21):
  • [9] First-principles DFT+U studies of the atomic, electronic, and magnetic structure of α-MnO2 (cryptomelane)
    Cockayne, Eric
    Li, Lan
    [J]. CHEMICAL PHYSICS LETTERS, 2012, 544 : 53 - 58
  • [10] Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries
    Fan, Xiulin
    Zhu, Yujie
    Luo, Chao
    Suo, Liumin
    Lin, Yan
    Gao, Tao
    Xu, Kang
    Wang, Chunsheng
    [J]. ACS NANO, 2016, 10 (05) : 5567 - 5577