Application of Mid-infrared and Raman Spectroscopy to the Study of Bacteria

被引:186
|
作者
Lu, Xiaonan [1 ]
Al-Qadiri, Hamzah M. [2 ]
Lin, Mengshi [3 ]
Rasco, Barbara A. [1 ]
机构
[1] Washington State Univ, Sch Food Sci, Pullman, WA 99164 USA
[2] Univ Jordan, Dept Nutr & Food Technol, Amman 11942, Jordan
[3] Univ Missouri, Div Food Syst & Bioengn, Food Sci Program, Columbia, MO 65211 USA
关键词
Raman spectroscopy; Infrared spectroscopy; Bacteria; TRANSFORM-INFRARED-SPECTROSCOPY; FT-IR SPECTROSCOPY; CLINICALLY RELEVANT MICROORGANISMS; PYROLYSIS MASS-SPECTROMETRY; ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; QUANTITATIVE DETECTION; BORDETELLA-PERTUSSIS; RAPID IDENTIFICATION; MICROBIAL SPOILAGE;
D O I
10.1007/s11947-011-0516-8
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Infrared spectroscopy and Raman spectroscopy provide complementary technologies for rapid and precise detection of microorganisms and are emerging methods in food analysis. It is possible to use either of these techniques to differentiate and quantify microorganisms in relatively simple matrices such as liquid media and simple solutions with determinations taking less than an hour. Vibrational spectroscopy, unlike other techniques used in microbiology, is a relatively simple method for studying structural changes occurring within a microbial cell following environmental stress and applications of food processing treatments. Vibrational spectroscopy provides a wide range of biochemical properties about bacteria in a single spectrum, most importantly characteristics of the cell membrane. These techniques are especially useful for studying properties of bacterial biofilms on contact surfaces, the presence and viability of bacterial vegetative cells and spores, the type and degree of bacterial injury, and assessment of antibiotic susceptibility. Future trends in food analysis will involve combining vibrational spectroscopy with microscopy, mass spectroscopy, or DNA-based methods to comprehensively study bacterial stress. Further advances in selectivity, sensitivity, and improved chemometric methods, along with reduction in the cost of instrumentation, may lead to the development of field-ready and real-time analytical systems.
引用
收藏
页码:919 / 935
页数:17
相关论文
共 50 条
  • [31] Dairy product analysis: Identification of microorganisms by mid-infrared spectroscopy and determination of constituents by Raman spectroscopy
    Fehrmann, A
    Franz, M
    Hoffmann, A
    Rudzik, L
    Wust, E
    JOURNAL OF AOAC INTERNATIONAL, 1995, 78 (06) : 1537 - 1542
  • [32] Nonlinear Photothermal Mid-Infrared Spectroscopy
    Totachawattana, Atcha
    Erramilli, Shyamsunder
    Sander, Michelle Y.
    ULTRAFAST NONLINEAR IMAGING AND SPECTROSCOPY IV, 2016, 9956
  • [33] Mid-infrared laser applications in spectroscopy
    Tittel, FK
    Richter, D
    Fried, A
    SOLID-STATE MID-INFRARED LASER SOURCES, 2003, 89 : 445 - 510
  • [34] Dendritic Plasmonics for Mid-Infrared Spectroscopy
    Wallace, Gregory Q.
    Foy, Hayden C.
    Rosendahl, Scott M.
    Lagugne-Labarthet, Francois
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (17): : 9497 - 9507
  • [35] Mid-infrared imaging spectroscopy in Ophiuchus
    Boulanger, F
    Reach, WT
    Abergel, A
    Bernard, JP
    Cesarsky, CJ
    Cesarsky, D
    Desert, FX
    Falgarone, E
    Lequeux, J
    Metcalfe, L
    Perault, M
    Puget, JL
    Rouan, D
    Sauvage, M
    Tran, D
    Vigroux, L
    ASTRONOMY & ASTROPHYSICS, 1996, 315 (02): : L325 - L328
  • [36] Spectroscopy on vertical microcavities for the mid-infrared
    Heiss, W
    Schwarzl, T
    Springholz, G
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2001, 188 (03): : 929 - 935
  • [37] Mid-Infrared Energy Deposition Spectroscopy
    Yin, Jiaze
    Pfluegl, Christian
    Teng, Chu C.
    Bolarinho, Rylie
    Chen, Guo
    Gong, Xinrui
    Dong, Dashan
    Vakhshoori, Daryoosh
    Cheng, Ji-Xin
    PHYSICAL REVIEW LETTERS, 2025, 134 (09)
  • [38] Mid-infrared spectroscopy of the Andromeda galaxy
    Hemachandra, D.
    Barmby, P.
    Peeters, E.
    Willner, S. P.
    Ashby, M. L. N.
    Smith, H. A.
    Gordon, K. D.
    Smith, D. A.
    Fazio, G. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 454 (01) : 818 - 830
  • [39] Application of Mid-Infrared Spectroscopy in the Quality Control of Traditional Chinese Medicines
    Sun, Suqin
    Chen, Jianbo
    Zhou, Qun
    Lu, Guanghua
    Chan, Kelvin
    PLANTA MEDICA, 2010, 76 (17) : 1987 - 1996
  • [40] Mid-infrared THz beam sensors: exploration and application for phonon spectroscopy
    Han, PY
    Cho, GC
    Zhang, XC
    ULTRAFAST PHENOMENA IN SEMICONDUCTORS III, 1999, 3624 : 224 - 233