Vision-Based Tracking Control of Quadrotor with Backstepping Sliding Mode Control

被引:21
作者
Zhao, Bingfeng [1 ]
Tang, Yang [1 ]
Wu, Chunping [2 ]
Du, Wei [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Backstepping; quadrotor; Kalman filter; semi-direct monocular visual odometry; sliding mode control; tracking control; COMMAND-FILTERED COMPENSATION; CONTROL DESIGN; LOCALIZATION; UAV;
D O I
10.1109/ACCESS.2018.2882241
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vision-based quadrotor will be a good carrier for big data. This paper investigates the quadrotor tracking control by designing an adaptive sliding mode controller based on the backstepping technique with the advantages of simplicity in design and ease of application. A sliding mode controller is first developed to ensure fast convergence speed with the desired reference, and then the backstepping technique is used until the desired reference trajectory is achieved and finally the appropriate control laws are obtained. In order to achieve the precise and fast localization of a quadrotor, a popular visual odometry algorithm is applied to gathering good position information required in motion estimation. We employ Kalman filter for sensor data fusion and state estimation. Gazebo is applied by creating a 3D dynamic environment to recreate the complex environment potentially encountered in the real world.
引用
收藏
页码:72439 / 72448
页数:10
相关论文
共 39 条
[1]   Image-based tracking control of VTOL unmanned aerial vehicles [J].
Abdessameud, Abdelkader ;
Janabi-Sharifi, Farrokh .
AUTOMATICA, 2015, 53 :111-119
[2]   Lucas-Kanade 20 years on: A unifying framework [J].
Baker, S ;
Matthews, I .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) :221-255
[3]   A Globally Stabilizing Path Following Controller for Rotorcraft With Wind Disturbance Rejection [J].
Cabecinhas, David ;
Cunha, Rita ;
Silvestre, Carlos .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (02) :708-714
[4]   Inverse Depth Parametrization for Monocular SLAM [J].
Civera, Javier ;
Davison, Andrew J. ;
Montiel, J. M. Martinez .
IEEE TRANSACTIONS ON ROBOTICS, 2008, 24 (05) :932-945
[5]   Output Feedback Control of a Quadrotor UAV Using Neural Networks [J].
Dierks, Travis ;
Jagannathan, Sarangapani .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (01) :50-66
[6]   On-Manifold Preintegration for Real-Time Visual-Inertial Odometry [J].
Forster, Christian ;
Carlone, Luca ;
Dellaert, Frank ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (01) :1-21
[7]  
Forster C, 2014, IEEE INT CONF ROBOT, P15, DOI 10.1109/ICRA.2014.6906584
[8]  
Furrer F, 2016, STUD COMPUT INTELL, V625, P595, DOI 10.1007/978-3-319-26054-9_23
[9]   Hybrid Dynamical Systems [J].
Goebel, Rafal ;
Sanfelice, Ricardo G. ;
Teel, Andrew R. .
IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (02) :28-93
[10]  
Hoang T, 2017, P AMER CONTR CONF, P5580, DOI 10.23919/ACC.2017.7963823