Size-Dependent Distribution of Patient-Specific Hemodynamic Factors in Unruptured Cerebral Aneurysms Using Computational Fluid Dynamics

被引:3
|
作者
Lee, Ui Yun [1 ]
Chung, Gyung Ho [2 ,3 ]
Jung, Jinmu [1 ,4 ]
Kwak, Hyo Sung [2 ,3 ]
机构
[1] Chonbuk Natl Univ, Div Mech Design Engn, Jeonju 54896, South Korea
[2] Chonbuk Natl Univ, Biomed Res Inst, Chonbuk Natl Univ Hosp, Dept Radiol, Jeonju 54907, South Korea
[3] Chonbuk Natl Univ, Biomed Res Inst, Chonbuk Natl Univ Hosp, Res Inst Clin Med, Jeonju 54907, South Korea
[4] Chonbuk Natl Univ, Hemorheol Res Inst, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
aneurysm; computational fluid dynamics; non-Newtonian; shear rate; blood viscosity; wall shear stress; WALL SHEAR-STRESS; NEWTONIAN BLOOD-FLOW; INTRACRANIAL ANEURYSMS; BASILAR TERMINUS; ARTERY; RATIO; PERFORMANCE; GROWTH; RISK;
D O I
10.3390/diagnostics10020064
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose: To analyze size-dependent hemodynamic factors [velocity, shear rate, blood viscosity, wall shear stress (WSS)] in unruptured cerebral aneurysms using computational fluid dynamics (CFD) based on the measured non-Newtonian model of viscosity. Methods: Twenty-one patients with unruptured aneurysms formed the study cohort. Patient-specific geometric models were reconstructed for CFD analyses. Aneurysms were divided into small and large groups based on a cutoff size of 5 mm. For comparison between small and large aneurysms, 5 morphologic variables were measured. Patient-specific non-Newtonian blood viscosity was applied for more detailed CFD simulation. Quantitative and qualitative analyses of velocity, shear rate, blood viscosity, and WSS were conducted to compare small and large aneurysms. Results: Complex flow patterns were found in large aneurysms. Large aneurysms had a significantly lower shear rate (235 +/- 341 s(-1)) than small aneurysms (915 +/- 432 s(-1)) at peak-systole. Two times higher blood viscosity was observed in large aneurysms compared with small aneurysms. Lower WSS was found in large aneurysms (1.38 +/- 1.36 Pa) than in small aneurysms (3.53 +/- 1.22 Pa). All the differences in hemodynamic factors between small and large aneurysms were statistically significant. Conclusions: Large aneurysms tended to have complex flow patterns, low shear rate, high blood viscosity, and low WSS. The hemodynamic factors that we analyzed might be useful for decision making before surgical treatment of aneurysms.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms
    Sun, Qi
    Groth, Alexandra
    Aach, Til
    MEDICAL PHYSICS, 2012, 39 (02) : 742 - 754
  • [2] WHICH MORPHOLOGIC AND HEMODYNAMIC CHARACTERISTICS PREDICT INTRACRANIAL FUSIFORM ANEURYSMS RUPTURE? A PATIENT-SPECIFIC COMPUTATIONAL FLUID DYNAMICS STUDY
    Chen, Yan
    Fang, Yi-Bin
    Yang, Peng-Fei
    Huang, Qing-Hai
    Liu, Jian-Min
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2017, 17 (03)
  • [3] Patient-Specific Computational Fluid Dynamics in Ruptured Posterior Communicating Aneurysms Using Measured Non-Newtonian Viscosity : A Preliminary Study
    Lee, Ui Yun
    Jung, Jinmu
    Kwak, Hyo Sung
    Lee, Dong Hwan
    Chung, Gyung Ho
    Park, Jung Soo
    Koh, Eun Jeong
    JOURNAL OF KOREAN NEUROSURGICAL SOCIETY, 2019, 62 (02) : 183 - 192
  • [4] Computational fluid dynamics for predicting the growth of small unruptured cerebral aneurysms
    Tsuji, Masanori
    Ishida, Fujimaro
    Yasuda, Ryuta
    Sato, Takenori
    Furukawa, Kazuhiro
    Miura, Yoichi
    Umeda, Yasuyuki
    Toma, Naoki
    Suzuki, Hidenori
    JOURNAL OF NEUROSURGERY, 2024, 140 (01) : 138 - 143
  • [5] Influence of Hemodynamic Factors on Rupture of Intracranial Aneurysms: Patient-Specific 3D Mirror Aneurysms Model Computational Fluid Dynamics Simulation
    Lu, G.
    Huang, L.
    Zhang, X. L.
    Wang, S. Z.
    Hong, Y.
    Hu, Z.
    Geng, D. Y.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2011, 32 (07) : 1255 - 1261
  • [6] Interactive Decomposition and Mapping of Saccular Cerebral Aneurysms Using Harmonic Functions: Its First Application With "Patient-Specific" Computational Fluid Dynamics (CFD) Simulations
    Jiang, Jingfeng
    Strother, Charles M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (02) : 153 - 164
  • [7] Hemodynamic factor evaluation using computational fluid dynamics analysis for de novo bleb formation in unruptured intracranial aneurysms
    Uno, Takehiro
    Misaki, Kouichi
    Futami, Kazuya
    Nambu, Iku
    Yoshikawa, Akifumi
    Kamide, Tomoya
    Uchiyama, Naoyuki
    Nakada, Mitsutoshi
    NEUROLOGICAL SCIENCES, 2022, 43 (03) : 1849 - 1857
  • [8] Generalized versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics
    Jansen, I. G. H.
    Schneiders, J. J.
    Potters, W. V.
    van Ooij, P.
    van den Berg, R.
    van Bavel, E.
    Marquering, H. A.
    Majoie, C. B. L. M.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (08) : 1543 - 1548
  • [9] Hemodynamic factor evaluation using computational fluid dynamics analysis for de novo bleb formation in unruptured intracranial aneurysms
    Takehiro Uno
    Kouichi Misaki
    Kazuya Futami
    Iku Nambu
    Akifumi Yoshikawa
    Tomoya Kamide
    Naoyuki Uchiyama
    Mitsutoshi Nakada
    Neurological Sciences, 2022, 43 : 1849 - 1857
  • [10] How patient specific are patient-specific computational models of cerebral aneurysms? An overview of sources of error and variability
    Steinman, David A.
    Pereira, Vitor M.
    NEUROSURGICAL FOCUS, 2019, 47 (01)