An End-to-End Deep Learning System for Hop Classification

被引:0
|
作者
Castro, Pedro [1 ]
Moreira, Gladston [1 ]
Luz, Eduardo [1 ]
机构
[1] Univ Fed Ouro Preto, Dept Comp, BR-35400000 Ouro Preto, MG, Brazil
关键词
Deep learning; Convolutional neural networks; Visualization; Task analysis; Image segmentation; IEEE transactions; Computer architecture; Hop; Convolutional neural network; Leaf recognition; Data augmentation; HUMULUS-LUPULUS L; ACIDS;
D O I
10.1109/TLA.2022.9667141
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic classification of plant species is a very challenging and widely studied problem in the literature. Distinguishing different varieties within the same species is an even more challenging task although less explored. Nevertheless, for some species distinguishing the varieties within the species can be of paramount importance.Hops, a plant widely used in beer production, has over 250 cataloged varieties. Although the varieties have similar appearances, their chemical components, which influence the aroma and flavor of the drink, are quite heterogeneous. Therefore, it is important for producers to distinguish which variety the plant belongs to in a simple manner.In this work, an end-to-end deep learning system is proposed to automate the task of hop classification. Five architectures are proposed and evaluated with an uncontrolled environment dataset that includes 12 varieties of hops on 1592 images, from three different cell phone cameras. The best architecture automatically detects the hop leaves on the image and performs the classification using the information of up to 10 leaves. The method achieved an accuracy of 95.69% with an inference time of 672ms. To reach such figures, state-of-the-art convolutional blocks were explored along with data augmentation techniques. Our results show that the system is robust and has a low computational cost.
引用
收藏
页码:430 / 442
页数:13
相关论文
共 50 条
  • [41] DEES-breast: deep end-to-end system for an early breast cancer classification
    Ben Ahmed, Ikram
    Ouarda, Wael
    Ben Amar, Chokri
    Boukadi, Khouloud
    EVOLVING SYSTEMS, 2024, 15 (05) : 1845 - 1863
  • [42] Detecting web attacks with end-to-end deep learning
    Pan, Yao
    Sun, Fangzhou
    Teng, Zhongwei
    White, Jules
    Schmidt, Douglas C.
    Staples, Jacob
    Krause, Lee
    JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2019, 10 (01)
  • [43] End-to-End Deep Learning of Optical Fiber Communications
    Karanov, Boris
    Chagnon, Mathieu
    Thouin, Felix
    Eriksson, Tobias A.
    Buelow, Henning
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) : 4843 - 4855
  • [44] End-to-End Deep Learning Method with Disparity Correction for Stereo Matching
    Zhiyu Zhou
    Mingxuan Liu
    Jiusen Guo
    Yaming Wang
    Donghe Yang
    Zefei Zhu
    Arabian Journal for Science and Engineering, 2024, 49 : 3331 - 3345
  • [45] An end-to-end approach to autonomous vehicle control using deep learning
    Magera Novello, Gustavo Antonio
    Yamamoto, Henrique Yda
    Lustosa Cabral, Eduardo Lobo
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2021, 13 (03): : 32 - 41
  • [46] An End-to-End Deep Neural Network for Facial Emotion Classification
    Jalal, Md Asif
    Mihaylova, Lyudmila
    Moore, Roger K.
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [47] An End-to-End Deep Learning Model for EEG-Based Major Depressive Disorder Classification
    Xia, Min
    Zhang, Yangsong
    Wu, Yihan
    Wang, Xiuzhu
    IEEE ACCESS, 2023, 11 : 41337 - 41347
  • [48] Deep Battery Saver: End-to-End Learning for Power Constrained Contrast Enhancement
    Yin, Jia-Li
    Chen, Bo-Hao
    Peng, Yan-Tsung
    Tsai, Chung-Chi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1049 - 1059
  • [49] An End-to-End Deep Learning Based Gesture Recognizer for Vehicle Self Parking System
    Ben Amara, Hassene
    Karray, Fakhri
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 404 - 416
  • [50] Accelerating End-to-End Deep Learning Workflow With Codesign of Data Preprocessing and Scheduling
    Cheng, Yang
    Li, Dan
    Guo, Zhiyuan
    Jiang, Binyao
    Geng, Jinkun
    Bai, Wei
    Wu, Jianping
    Xiong, Yongqiang
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (07) : 1802 - 1814