Etching mechanisms of graphene nanoribbons in downstream H2 plasmas: insights from molecular dynamics simulations

被引:24
|
作者
Davydova, A. [1 ]
Despiau-Pujo, E. [1 ]
Cunge, G. [1 ]
Graves, D. B. [2 ]
机构
[1] Univ Grenoble Alpes, CEA Leti Minatec, CNRS, LTM, F-38054 Grenoble, France
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
关键词
graphene nanoribbons; H-2; plasmas; etching; molecular dynamics; CARBON NANOTUBES; HYDROGEN-PLASMA; BASAL-PLANE; GRAPHANE; ENERGY; EDGES;
D O I
10.1088/0022-3727/48/19/195202
中图分类号
O59 [应用物理学];
学科分类号
摘要
Lateral etching mechanisms of graphene nanoribbons (GNRs) with zigzag (ZZ) edges in downstream H-2 plasmas are investigated using molecular dynamics simulations. A new etching mechanism is found, which occurs in three consecutive phases and requires a continuous exposure of GNRs to H atoms and high substrate temperatures (similar to 800 K). Full hydrogenation of GNR free edges during phase 1 reduces the potential barriers to H chemisorption on near-edge C atoms from the basal plane. Subsequent hydrogenation of near-edge C-C dimers creates mechanical stress between C atoms (due to local sp(2)-to-sp(3) rehybridizations) which leads to the rupture of C-C dimers bonds, unzipping locally the 1st and 2nd edge carbon rows. The unzipping then propagates randomly along the GNR edges and creates suspended linear carbon chains (phase 2). Weakened by their exposure to continuous H bombardment and strong thermal vibrations, the suspended carbon chains may then rupture, leading to the sputtering of their carbon atoms as single C atoms or C-2 molecules (phase 3). Thus no formation of volatile hydrocarbon etching products is observed in this three-phase mechanism, which explains why the ribbon edges can be sharp-cut without generation of line-edge roughness, as also observed experimentally. Influence of substrate temperature on ZZ-GNRs etching is investigated and suggests the dominant mechanisms for understanding the temperature dependence of the etch rate observed experimentally (peaks at 800 K and decreases for lower or higher temperatures).
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Thermal conductivity of graphene/graphane/graphene heterostructure nanoribbons: Non-equilibrium molecular dynamics simulations
    Kim, Jong-Chol
    Wi, Ju-Hyok
    Ri, Nam-Chol
    Ri, Su-Il
    SOLID STATE COMMUNICATIONS, 2021, 328
  • [12] Ab initio Molecular Dynamics of H2 Dissociative Adsorption on Graphene Surfaces
    Doi, Kentaro
    Onishi, Ikumi
    Kawano, Satoyuki
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2011, 77 (02): : 113 - 136
  • [13] Graphene-Titanium Interfaces from Molecular Dynamics Simulations
    Fonseca, Alexandre F.
    Liang, Tao
    Zhang, Difan
    Choudhary, Kamal
    Phillpot, Simon R.
    Sinnott, Susan B.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (38) : 33288 - 33297
  • [14] Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons
    Yao, Jinchun
    Xia, Yuxuan
    Dong, Shuhong
    Yu, Peishi
    Zhao, Junhua
    ENGINEERING FRACTURE MECHANICS, 2019, 218
  • [15] Nanomechanical behavior and failure mechanisms of hydrated montmorillonite: Insights from molecular dynamics simulations
    Xiao, Chang
    Chai, Zhaoyun
    Liu, Xiangyu
    Li, Tianyu
    Shen, Yuxu
    Xin, Zipeng
    Li, Jian
    CHEMICAL PHYSICS LETTERS, 2025, 869
  • [16] Both edge substitution effects on thermal conductivity of armchair graphene nanoribbons under tensile strain: From equilibrium molecular dynamics simulations
    Ryu, Kyong-Hui
    Ri, Nam-Chol
    Kim, Jong-Chol
    Ri, Su-Il
    CHEMICAL PHYSICS LETTERS, 2024, 857
  • [17] Mechanism of Graphene Oxide as an Enzyme Inhibitor from Molecular Dynamics Simulations
    Sun, Xiaotian
    Feng, Zhiwei
    Hou, Tingjun
    Li, Youyong
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) : 7153 - 7163
  • [18] In Situ Monitoring of Etching Characteristic and Surface Reactions in Atomic Layer Etching of SiN Using Cyclic CF4/H2 and H2 Plasmas
    Hsiao, Shih-Nan
    Sekine, Makoto
    Hori, Masaru
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (29) : 35622 - 35630
  • [19] Insights into Uranyl Chemistry from Molecular Dynamics Simulations
    Buehl, Michael
    Wipff, Georges
    CHEMPHYSCHEM, 2011, 12 (17) : 3095 - 3105
  • [20] Monoamine transporters: insights from molecular dynamics simulations
    Grouleff, Julie
    Ladefoged, Lucy Kate
    Koldso, Heidi
    Schiott, Birgit
    FRONTIERS IN PHARMACOLOGY, 2015, 6