Bivariate Conway-Maxwell-Poisson distribution: Formulation, properties, and inference
被引:22
|
作者:
Sellers, Kimberly F.
论文数: 0引用数: 0
h-index: 0
机构:
Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
US Bur Census, Ctr Stat Res & Methodol, Washington, DC 20233 USAGeorgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
Sellers, Kimberly F.
[1
,2
]
Morris, Darcy Steeg
论文数: 0引用数: 0
h-index: 0
机构:
US Bur Census, Ctr Stat Res & Methodol, Washington, DC 20233 USAGeorgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
Morris, Darcy Steeg
[2
]
Balakrishnan, Narayanaswamy
论文数: 0引用数: 0
h-index: 0
机构:
McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, CanadaGeorgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
Balakrishnan, Narayanaswamy
[3
]
机构:
[1] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[2] US Bur Census, Ctr Stat Res & Methodol, Washington, DC 20233 USA
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
The bivariate Poisson distribution is a popular distribution for modeling bivariate count data. Its basic assumptions and marginal equi-dispersion, however, may prove limiting in some contexts. To allow for data dispersion, we develop here a bivariate Conway-Maxwell-Poisson (COM-Poisson) distribution that includes the bivariate Poisson, bivariate Bernoulli, and bivariate geometric distributions all as special cases. As a result, the bivariate COM-Poisson distribution serves as a flexible alternative and unifying framework for modeling bivariate count data, especially in the presence of data dispersion. Published by Elsevier Inc.
机构:
UCSI Univ, Dept Actuarial Sci & Appl Stat, Kuala Lumpur 56000, MalaysiaUCSI Univ, Dept Actuarial Sci & Appl Stat, Kuala Lumpur 56000, Malaysia
Ong, Seng Huat
Gupta, Ramesh C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maine, Dept Math & Stat, Orono, ME 04469 USAUCSI Univ, Dept Actuarial Sci & Appl Stat, Kuala Lumpur 56000, Malaysia
Gupta, Ramesh C.
Ma, Tiefeng
论文数: 0引用数: 0
h-index: 0
机构:
Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R ChinaUCSI Univ, Dept Actuarial Sci & Appl Stat, Kuala Lumpur 56000, Malaysia
Ma, Tiefeng
Sim, Shin Zhu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tunku Abdul Rahman, Dept Math & Actuarial Sci, Kajang 43000, Selangor, MalaysiaUCSI Univ, Dept Actuarial Sci & Appl Stat, Kuala Lumpur 56000, Malaysia