Bivariate Conway-Maxwell-Poisson distribution: Formulation, properties, and inference

被引:22
|
作者
Sellers, Kimberly F. [1 ,2 ]
Morris, Darcy Steeg [2 ]
Balakrishnan, Narayanaswamy [3 ]
机构
[1] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[2] US Bur Census, Ctr Stat Res & Methodol, Washington, DC 20233 USA
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bivariate distribution; Dispersion; Dependence; Conway-Maxwell-Poisson (COM-Poisson); FAMILY;
D O I
10.1016/j.jmva.2016.04.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The bivariate Poisson distribution is a popular distribution for modeling bivariate count data. Its basic assumptions and marginal equi-dispersion, however, may prove limiting in some contexts. To allow for data dispersion, we develop here a bivariate Conway-Maxwell-Poisson (COM-Poisson) distribution that includes the bivariate Poisson, bivariate Bernoulli, and bivariate geometric distributions all as special cases. As a result, the bivariate COM-Poisson distribution serves as a flexible alternative and unifying framework for modeling bivariate count data, especially in the presence of data dispersion. Published by Elsevier Inc.
引用
收藏
页码:152 / 168
页数:17
相关论文
共 50 条
  • [21] New biased estimators for the Conway-Maxwell-Poisson Model
    Dawoud, Issam
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025, 95 (01) : 117 - 136
  • [22] A longitudinal Bayesian mixed effects model with hurdle Conway-Maxwell-Poisson distribution
    Kang, Tong
    Gaskins, Jeremy
    Levy, Steven
    Datta, Somnath
    STATISTICS IN MEDICINE, 2021, 40 (06) : 1336 - 1356
  • [23] A Bayesian analysis of the Conway-Maxwell-Poisson cure rate model
    Cancho, Vicente G.
    de Castro, Mario
    Rodrigues, Josemar
    STATISTICAL PAPERS, 2012, 53 (01) : 165 - 176
  • [24] The Use of the Conway-Maxwell-Poisson in the Seasonal Forecasting of Tropical Cyclones
    Mitchell, Timothy D.
    Camp, Joanne
    WEATHER AND FORECASTING, 2021, 36 (03) : 929 - 939
  • [25] Conjugate Analysis of the Conway-Maxwell-Poisson Distribution (vol 1, pg 363, 2006)
    Kadane, Joseph B.
    Shmueli, Galit
    Minka, Thomas P.
    Borle, Sharad
    Boatwright, Peter
    BAYESIAN ANALYSIS, 2018, 13 (03): : 1005 - 1005
  • [26] Conway-Maxwell-Poisson regression models for dispersed count data
    Sellers, Kimberly F.
    Premeaux, Bailey
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (06)
  • [27] Conway-Maxwell-Poisson seasonal autoregressive moving average model
    Melo, Moizes da Silva
    Alencar, Airlane Pereira
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (02) : 283 - 299
  • [28] Two parameter estimators for the Conway-Maxwell-Poisson regression model
    Sami, Faiza
    Butt, Muhammad Moeen
    Amin, Muhammad
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (13) : 2137 - 2157
  • [29] Uniformly most powerful unbiased tests for the dispersion parameter of the Conway-Maxwell-Poisson distribution
    Bedbur, S.
    Kamps, U.
    STATISTICS & PROBABILITY LETTERS, 2023, 196
  • [30] Modified jackknife ridge estimator for the Conway-Maxwell-Poisson model
    Algamal, Zakariya Yahya
    Abonazel, Mohamed R.
    Awwad, Fuad A.
    Eldin, Elsayed Tag
    SCIENTIFIC AFRICAN, 2023, 19