Bivariate Conway-Maxwell-Poisson distribution: Formulation, properties, and inference

被引:22
|
作者
Sellers, Kimberly F. [1 ,2 ]
Morris, Darcy Steeg [2 ]
Balakrishnan, Narayanaswamy [3 ]
机构
[1] Georgetown Univ, Dept Math & Stat, Washington, DC 20057 USA
[2] US Bur Census, Ctr Stat Res & Methodol, Washington, DC 20233 USA
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bivariate distribution; Dispersion; Dependence; Conway-Maxwell-Poisson (COM-Poisson); FAMILY;
D O I
10.1016/j.jmva.2016.04.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The bivariate Poisson distribution is a popular distribution for modeling bivariate count data. Its basic assumptions and marginal equi-dispersion, however, may prove limiting in some contexts. To allow for data dispersion, we develop here a bivariate Conway-Maxwell-Poisson (COM-Poisson) distribution that includes the bivariate Poisson, bivariate Bernoulli, and bivariate geometric distributions all as special cases. As a result, the bivariate COM-Poisson distribution serves as a flexible alternative and unifying framework for modeling bivariate count data, especially in the presence of data dispersion. Published by Elsevier Inc.
引用
收藏
页码:152 / 168
页数:17
相关论文
共 50 条
  • [1] BIVARIATE CONWAY-MAXWELL-POISSON PASCAL DISTRIBUTION WITH DATA ANALYSIS
    Thilagarathinam, S.
    Saavithri, V.
    Seethalakshmi, R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 504 - 512
  • [2] Conjugate Analysis of the Conway-Maxwell-Poisson Distribution
    Kadane, Joseph B.
    Shmueli, Galit
    Minka, Thomas P.
    Borle, Sharad
    Boatwright, Peter
    BAYESIAN ANALYSIS, 2006, 1 (02): : 363 - 374
  • [3] A Conway-Maxwell-Poisson Type Generalization of Hypergeometric Distribution
    Roy, Sudip
    Tripathi, Ram C. C.
    Balakrishnan, Narayanaswamy
    MATHEMATICS, 2023, 11 (03)
  • [4] Approximating the Conway-Maxwell-Poisson distribution normalization constant
    Gillispie, Steven B.
    Green, Christopher G.
    STATISTICS, 2015, 49 (05) : 1062 - 1073
  • [5] When is the Conway-Maxwell-Poisson distribution infinitely divisible?
    Geng, Xi
    Xia, Aihua
    STATISTICS & PROBABILITY LETTERS, 2022, 181
  • [6] The Conway-Maxwell-Poisson distribution: Distributional theory and approximation
    Daly, Fraser
    Gaunt, Robert E.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (02): : 635 - 658
  • [7] Multivariate Conway-Maxwell-Poisson Distribution: Sarmanov Method and Doubly Intractable Bayesian Inference
    Piancastelli, Luiza S. C.
    Friel, Nial
    Barreto-Souza, Wagner
    Ombao, Hernando
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (02) : 483 - 500
  • [8] On the Conway-Maxwell-Poisson point process
    Flint, Ian
    Wang, Yan
    Xia, Aihua
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (16) : 5687 - 5705
  • [9] An asymptotic expansion for the normalizing constant of the Conway-Maxwell-Poisson distribution
    Gaunt, Robert E.
    Iyengar, Satish
    Daalhuis, Adri B. Olde
    Simsek, Burcin
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (01) : 163 - 180
  • [10] Approximating the Conway-Maxwell-Poisson normalizing constant
    Simsek, Burcin
    Iyengar, Satish
    FILOMAT, 2016, 30 (04) : 953 - 960