ON THE SOLUTION OF BRATU'S INITIAL VALUE PROBLEM IN THE LIOUVILLE-CAPUTO SENSE BY ARA TRANSFORM AND DECOMPOSITION METHOD

被引:2
作者
Cetinkaya, Suleyman [1 ]
Demir, Ali [1 ]
机构
[1] Kocaeli Univ, Dept Math, Fac Arts & Sci, TR-41380 Kocaeli, Turkey
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2021年 / 74卷 / 12期
关键词
ARA transform; decomposition method; Bratu's initial value problem; Liouville-Caputo derivative; EQUATIONS; TIME;
D O I
10.7546/CRABS.2021.12.02
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a new method which is a linear combination of ARA transform and the decomposition method is proposed to establish the solution of Bratu's initial value problem in the Liouville-Caputo sense. First of all, ARA transform and its inverse transform are utilized to reduce the problem into a algebraic equation. Later, by using the decomposition method the numerical solution is established in the series form. Finally, an illustrative example is presented to reveal the implementation of the method. The outcomes illustrate the accuracy and efficiency of the method.
引用
收藏
页码:1729 / 1738
页数:10
相关论文
共 20 条
[1]   The Lie-group shooting method for solving the Bratu equation [J].
Abbasbandy, S. ;
Hashemi, M. S. ;
Liu, Chein-Shan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) :4238-4249
[2]   Exact and approximate solutions of time-fractional models arising from physics via Shehu transform [J].
Akinyemi, Lanre ;
Iyiola, Olaniyi S. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) :7442-7464
[3]  
[Anonymous], 1965, SCHAUMS OUTLINE SERI
[4]  
Batiha B, 2010, HACET J MATH STAT, V39, P23
[5]  
Feng XL, 2008, TOPOL METHOD NONL AN, V31, P243
[6]  
Hany N., 2013, Commun Numer Anal, V2013, P1, DOI DOI 10.5899/2013/CNA-00139
[7]   Orthonormal shifted discrete Legendre polynomials for solving a coupled system of nonlinear variable-order time fractional reaction-advection-diffusion equations [J].
Heydari, M. H. ;
Avazzadeh, Z. ;
Atangana, A. .
APPLIED NUMERICAL MATHEMATICS, 2021, 161 (161) :425-436
[8]   Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation [J].
Jannelli, Alessandra ;
Ruggieri, Marianna ;
Speciale, Maria Paola .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 70 :89-101
[9]  
Khalouta A., 2020, TATRA MOUNTAINS MATH, V76, P127
[10]  
Kilbas Anatoly A., 2006, Theory and Applications of Fractional Differential Equations, V204, P1