Estimation of the Distribution of Tabebuia guayacan (Bignoniaceae) Using High-Resolution Remote Sensing Imagery

被引:34
|
作者
Sanchez-Azofeifa, Arturo [1 ,2 ,3 ]
Rivard, Benoit [1 ,2 ]
Wright, Joseph [3 ]
Feng, Ji-Lu [1 ,2 ]
Li, Peijun [4 ,5 ]
Chong, Mei Mei [1 ,2 ]
Bohlman, Stephanie A. [6 ]
机构
[1] Univ Alberta, CEOS, Edmonton, AB T6G 2R3, Canada
[2] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2R3, Canada
[3] Smithsonian Trop Res Inst, Panama City, Panama
[4] Peking Univ, Inst Remote Sensing, Beijing 100871, Peoples R China
[5] Peking Univ, GIS, Beijing 100871, Peoples R China
[6] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
high-resolution remote sensing; T; guayacan; Spectral Angle Mapping; machine learning; TROPICAL MOIST FOREST; LEAF-AREA INDEX; HYPERSPECTRAL DISCRIMINATION; SATELLITE DATA; AMAZON FOREST; IN-SITU; CLASSIFICATION; TREES; LIANAS; VARIABILITY;
D O I
10.3390/s110403831
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Species identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama. The imagery was acquired on 29 April 2002 and 21 March 2004. Spectral Angle Mapping via a One-Class Support Vector machine was used to detect the presence of 422 and 557 flowering tress in the April 2002 and March 2004 imagery. Of these, 273 flowering trees are common to both dates. This study presents a new perspective on the effectiveness of high resolution remote sensing for monitoring a phenological response and its use as a tool for potential conservation and management of natural resources in tropical environments.
引用
收藏
页码:3831 / 3851
页数:21
相关论文
共 50 条
  • [41] Using Remote Sensing Multispectral Imagery for Invasive Species Quantification: The Effect of Image Resolution on Area and Biomass Estimation
    Meyer, Manuel de Figueiredo
    Goncalves, Jose Alberto
    Bio, Ana Maria Ferreira
    REMOTE SENSING, 2024, 16 (04)
  • [42] Estimation of aboveground biomass in mangrove forests using high-resolution satellite data
    Hirata, Yasumasa
    Tabuchi, Ryuichi
    Patanaponpaiboon, Pipat
    Poungparn, Sasitorn
    Yoneda, Reiji
    Fujioka, Yoshimi
    JOURNAL OF FOREST RESEARCH, 2014, 19 (01) : 34 - 41
  • [43] Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters
    Xu, Yongyang
    Wu, Liang
    Xie, Zhong
    Chen, Zhanlong
    REMOTE SENSING, 2018, 10 (01)
  • [44] BUILDING EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGERY BASED ON MULTI-SCALE FEATURE FUSION AND ENHANCEMENT
    Chen, Y.
    Cheng, H.
    Yao, S.
    Hu, Z.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 55 - 60
  • [45] A Transformer-based multi-modal fusion network for semantic segmentation of high-resolution remote sensing imagery
    Liu, Yutong
    Gao, Kun
    Wang, Hong
    Yang, Zhijia
    Wang, Pengyu
    Ji, Shijing
    Huang, Yanjun
    Zhu, Zhenyu
    Zhao, Xiaobin
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 133
  • [46] MSB-Net: An End-to-End Network for Extracting Building from High-Resolution Remote Sensing Imagery
    Lan, Guiwen
    Wei, Jia
    Huang, Hanqiang
    Zou, Fengfan
    Li, Dongbo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6253 - 6264
  • [47] Object-Oriented and Deep-Learning-Based High-Resolution Mapping from Large Remote Sensing Imagery
    Wu, Yijin
    Zhang, Pengfei
    Wu, Jing
    Li, Chang
    CANADIAN JOURNAL OF REMOTE SENSING, 2021, 47 (03) : 396 - 412
  • [48] Building area extraction from the high spatial resolution remote sensing imagery
    Shi, Wenzao
    Mao, Zhengyuan
    Liu, Jinqing
    EARTH SCIENCE INFORMATICS, 2019, 12 (01) : 19 - 29
  • [49] An Object-Based Semantic Classification Method for High Resolution Remote Sensing Imagery Using Ontology
    Gu, Haiyan
    Li, Haitao
    Yan, Li
    Liu, Zhengjun
    Blaschke, Thomas
    Soergel, Uwe
    REMOTE SENSING, 2017, 9 (04)
  • [50] Comparative analysis of different machine learning algorithms for urban footprint extraction in diverse urban contexts using high-resolution remote sensing imagery
    Gui, Baoling
    Bhardwaj, Anshuman
    Sam, Lydia
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2025, 35 (03) : 664 - 696