On the nature of the finite-temperature transition in QCD

被引:1
|
作者
Butti, A
Pelissetto, A
Vicari, E
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, I-00185 Rome, Italy
[4] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[5] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
来源
关键词
renormalization group; field theories in lower dimensions; QCD; lattice QCD;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the nature of the finite-temperature transition in QCD with N-f massless flavors. Universality arguments show that a continuous phase transition may exist only if there is a stable fixed point in the three-dimensional Phi(4) theory characterized by the symmetry-breaking pattern [SU(N-f)(L) x SU(N-f)(R)]/Z(N-f)V --> SU(N-f)V/Z(N-f)V, or [U (N-f)(L) x U (N-f)(R)]/U (1)(V) --> U (N-f)(V) /U (1)(V) if the U (1)(A) symmetry is effectively restored at T-c. In order to determine the fixed points of these Phi(4) theories, we exploit a three-dimensional perturbative approach in which physical quantities are expanded in powers of renormalized quartic couplings. We compute the perturbative expansion of the beta-functions to six loops and determine their large-order behavior. No stable fixed point is found, except for N-f = 2 corresponding to the symmetry-breaking pattern SO(4) --> SO(3). Therefore, the finite-temperature phase transition in QCD is of first order for N-f greater than or equal to 3. A continuous phase transition is allowed only for N-f = 2. But, since the theory with symmetry-breaking pattern [U(2)(L) x U(2)(R)]/U(t) --> U(2)(v)/U(1) does not have stable fixed points, the transition can be continuous only if the effective breaking of the U(I)A symmetry is sufficiently large.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] An overview of (selected) recent results in finite-temperature lattice QCD
    Bazavov, Alexei
    HOT QUARKS 2012: WORKSHOP FOR YOUNG SCIENTISTS ON THE PHYSICS OF ULTRARELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, 2013, 446
  • [42] Real-time pion propagation in finite-temperature QCD
    Son, DT
    Stephanov, MA
    PHYSICAL REVIEW D, 2002, 66 (07):
  • [43] Equation of state in finite-temperature QCD with improved Wilson quarks
    Khan, AA
    Aoki, S
    Burkhalter, R
    Ejiri, S
    Fukugita, M
    Hashimoto, S
    Ishizuka, N
    Iwasaki, Y
    Kanaya, K
    Kaneko, T
    Kuramashi, Y
    Manke, T
    Nagai, K
    Okamoto, M
    Okawa, M
    Shanahan, HP
    Ukawa, A
    Yoshié, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 360 - 362
  • [44] Monopole condensation and Polyakov loop in finite-temperature pure QCD
    Ejiri, S
    NUCLEAR PHYSICS B, 1997, : 491 - 493
  • [45] FINITE-TEMPERATURE QCD WITH INTERMEDIATE-LARGE QUARK MASSES
    KOGUT, JB
    SINCLAIR, DK
    PHYSICAL REVIEW D, 1989, 39 (02): : 636 - 642
  • [46] Finite-temperature chiral transitions in QCD with the Wilson quark action
    Aoki, S
    Iwasaki, Y
    Kanaya, K
    Kaya, S
    Ukawa, A
    Yoshie, T
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 397 - 399
  • [47] Finite-temperature critical point of a glass transition
    Elmatad, Yael S.
    Jack, Robert L.
    Chandler, David
    Garrahan, Juan P.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (29) : 12793 - 12798
  • [48] FINITE-TEMPERATURE DECONFINING TRANSITION IN THE ERST FORMALISM
    HATA, H
    TANIGUCHI, Y
    PROGRESS OF THEORETICAL PHYSICS, 1995, 93 (04): : 797 - 811
  • [49] Finite-temperature phase transition in φ6 potential
    Widyan, Hatem
    CANADIAN JOURNAL OF PHYSICS, 2008, 86 (11) : 1313 - 1319
  • [50] DECONFINEMENT AND CHIRAL-SYMMETRY RESTORATION IN FINITE-TEMPERATURE LATTICE QCD
    TRINCHERO, RC
    PHYSICAL REVIEW D, 1986, 34 (10): : 3198 - 3205