On the nature of the finite-temperature transition in QCD

被引:1
|
作者
Butti, A
Pelissetto, A
Vicari, E
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, I-00185 Rome, Italy
[4] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[5] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2003年 / 08期
关键词
renormalization group; field theories in lower dimensions; QCD; lattice QCD;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the nature of the finite-temperature transition in QCD with N-f massless flavors. Universality arguments show that a continuous phase transition may exist only if there is a stable fixed point in the three-dimensional Phi(4) theory characterized by the symmetry-breaking pattern [SU(N-f)(L) x SU(N-f)(R)]/Z(N-f)V --> SU(N-f)V/Z(N-f)V, or [U (N-f)(L) x U (N-f)(R)]/U (1)(V) --> U (N-f)(V) /U (1)(V) if the U (1)(A) symmetry is effectively restored at T-c. In order to determine the fixed points of these Phi(4) theories, we exploit a three-dimensional perturbative approach in which physical quantities are expanded in powers of renormalized quartic couplings. We compute the perturbative expansion of the beta-functions to six loops and determine their large-order behavior. No stable fixed point is found, except for N-f = 2 corresponding to the symmetry-breaking pattern SO(4) --> SO(3). Therefore, the finite-temperature phase transition in QCD is of first order for N-f greater than or equal to 3. A continuous phase transition is allowed only for N-f = 2. But, since the theory with symmetry-breaking pattern [U(2)(L) x U(2)(R)]/U(t) --> U(2)(v)/U(1) does not have stable fixed points, the transition can be continuous only if the effective breaking of the U(I)A symmetry is sufficiently large.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Lattice results on the phase structure and equation of state in QCD at finite temperature
    Kanaya, Kazuyuki
    IX INTERNATIONAL CONFERENCE ON QUARK CONFINEMENT AND THE HADRON SPECTRUM (QCHS IX), 2011, 1343 : 57 - 62
  • [42] Calculation of equation of state of QCD at zero temperature and finite chemical potential
    Jiang Yu
    Li Ning
    Sun Wei-Min
    Zong Hong-Shi
    CHINESE PHYSICS C, 2010, 34 (09) : 1324 - 1327
  • [43] The QCD transition temperature: results with physical masses in the continuum limit II
    Aoki, Yasumichi
    Borsanyi, Szabolcs
    Duerr, Stephan
    Fodor, Zoltan
    Katz, Sandor D.
    Krieg, Stefan
    Szabo, Kalman
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):
  • [44] The Wilson flow and the finite temperature phase transition
    M. Wandelt
    F. Knechtli
    M. Günther
    Journal of High Energy Physics, 2016
  • [45] The Wilson flow and the finite temperature phase transition
    Wandelt, M.
    Knechtli, F.
    Guenther, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [46] Critical point phase transition for finite temperature 3-flavor QCD with nonperturbatively O(a) improved Wilson fermions at Nt=10
    Jin, Xiao-Yong
    Kuramashi, Yoshinobu
    Nakamura, Yoshifumi
    Takeda, Shinji
    Ukawa, Akira
    PHYSICAL REVIEW D, 2017, 96 (03)
  • [47] Critical endline of the finite temperature phase transition for 2+1 flavor QCD around the SU(3)-flavor symmetric point
    Kuramashi, Yoshinobu
    Nakamura, Yoshifumi
    Takeda, Shinji
    Ukawa, Akira
    PHYSICAL REVIEW D, 2016, 94 (11)
  • [48] Finite-temperature dynamics and thermal intraband magnon scattering in Haldane spin-one chains
    Becker, J.
    Koehler, T.
    Tiegel, A. C.
    Manmana, S. R.
    Wessel, S.
    Honecker, A.
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [49] Light-like mesons and deep inelastic scattering in finite-temperature AdS/CFT with flavor
    Iancu, E.
    Muelle, A. H.
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (02):
  • [50] The QCD nature of dark energy
    Urban, Federico R.
    Zhitnitsky, Ariel R.
    NUCLEAR PHYSICS B, 2010, 835 (1-2) : 135 - 173