On the nature of the finite-temperature transition in QCD

被引:1
|
作者
Butti, A
Pelissetto, A
Vicari, E
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[3] Ist Nazl Fis Nucl, I-00185 Rome, Italy
[4] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[5] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2003年 / 08期
关键词
renormalization group; field theories in lower dimensions; QCD; lattice QCD;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the nature of the finite-temperature transition in QCD with N-f massless flavors. Universality arguments show that a continuous phase transition may exist only if there is a stable fixed point in the three-dimensional Phi(4) theory characterized by the symmetry-breaking pattern [SU(N-f)(L) x SU(N-f)(R)]/Z(N-f)V --> SU(N-f)V/Z(N-f)V, or [U (N-f)(L) x U (N-f)(R)]/U (1)(V) --> U (N-f)(V) /U (1)(V) if the U (1)(A) symmetry is effectively restored at T-c. In order to determine the fixed points of these Phi(4) theories, we exploit a three-dimensional perturbative approach in which physical quantities are expanded in powers of renormalized quartic couplings. We compute the perturbative expansion of the beta-functions to six loops and determine their large-order behavior. No stable fixed point is found, except for N-f = 2 corresponding to the symmetry-breaking pattern SO(4) --> SO(3). Therefore, the finite-temperature phase transition in QCD is of first order for N-f greater than or equal to 3. A continuous phase transition is allowed only for N-f = 2. But, since the theory with symmetry-breaking pattern [U(2)(L) x U(2)(R)]/U(t) --> U(2)(v)/U(1) does not have stable fixed points, the transition can be continuous only if the effective breaking of the U(I)A symmetry is sufficiently large.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] PT Symmetry and QCD: Finite Temperature and Density
    Ogilvie, Michael C.
    Meisinger, Peter N.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [22] Topological deconfinement transition in QCD at finite isospin density
    Kashiwa, Kouji
    Ohnishi, Akira
    PHYSICS LETTERS B, 2017, 772 : 669 - 674
  • [23] Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice
    Chou, Po-Hao
    Zhai, Liang-Jun
    Chung, Chung-Hou
    Mou, Chung-Yu
    Lee, Ting-Kuo
    PHYSICAL REVIEW LETTERS, 2016, 116 (17)
  • [24] Finite-Temperature Properties across the Charge Ordering Transition-Combined Bosonization, Renormalization Group, and Numerical Methods-
    Yoshioka, Hideo
    Tsuchiizu, Masahisa
    Otsuka, Yuichi
    Seo, Hitoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (09)
  • [25] Finite-temperature modification of heavy particle decay and dark matter annihilation
    Beneke, Martin
    Dighera, Francesco
    Hryczuk, Andrzej
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (09):
  • [26] FINITE-TEMPERATURE BOSE-EINSTEIN CONDENSATION IN INTERACTING BOSON SYSTEM
    Anchishkin, D.
    Mishustin, I
    Stashko, O.
    Zhuravel, D.
    Stoecker, H.
    UKRAINIAN JOURNAL OF PHYSICS, 2019, 64 (12): : 1118 - 1124
  • [27] A schematic model for QCD at finite temperature: the first steps
    Jesgarz, S
    Lerma, S
    Hess, PO
    Civitarese, O
    Reboiro, M
    REVISTA MEXICANA DE FISICA, 2002, 48 : 41 - 48
  • [28] Finite-temperature minimally entangled typical thermal states impurity solver
    Cao, Xiaodong
    Stoudenmire, E. Miles
    Parcollet, Olivier
    PHYSICAL REVIEW B, 2024, 109 (24)
  • [29] Phase structure of finite temperature QCD in the heavy quark region
    Saito, H.
    Ejiri, S.
    Aoki, S.
    Hatsuda, T.
    Kanaya, K.
    Maezawa, Y.
    Ohno, H.
    Umeda, T.
    PHYSICAL REVIEW D, 2011, 84 (05):
  • [30] Vector Meson Mass in Finite Density and Temperature Lattice QCD
    王睿
    陈莹
    宫明
    刘川
    刘玉斌
    刘朝峰
    马建平
    孟祥飞
    张剑波
    Communications in Theoretical Physics, 2015, 63 (05) : 559 - 564