Multiplicity of forced convective heat transfer of nanofluids in curved ducts

被引:9
|
作者
Liu, Fang [1 ,2 ]
Zhang, Dongxiang [1 ]
Cai, Yang [1 ]
Qiu, Zhongzhu [1 ]
Zhu, Qunzhi [1 ]
Zhao, Jun [2 ]
Wang, Liqiu [3 ]
Tian, Haidong [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Energy & Mech Engn, 2103 Pingliang Rd, Shanghai 200090, Peoples R China
[2] Tianjin Univ, MOE, Key Lab Efficient Utilizat Low & Medium Grade Ene, Tianjin 300350, Peoples R China
[3] Univ Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Nanofluids; Forced convective heat transfer; Multiplicity; Two-phase approach; NON-NEWTONIAN NANOFLUID; WATER-CUO NANOFLUID; TIO2/WATER NANOFLUIDS; THERMAL-CONDUCTIVITY; NUMERICAL-SIMULATION; TRANSFER ENHANCEMENT; PRESSURE-DROP; COILED TUBES; ASPECT RATIO; FLUID-FLOW;
D O I
10.1016/j.ijheatmasstransfer.2018.09.115
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the present work, a numerical study is made on the fully-developed forced convective heat transfer of nanofluids in a curved square duct using Eulerian-Lagrangian two-phase approach. The curvature ratio of the duct is 0.02 and its hydraulic diameter is 8 mm. The Al2O3-water nanofluids contain spherical nanoparticles with particle diameter of 30 nm and volume fraction of 0.5%. Three different flow structures of nanofluids are obtained through the small perturbations generated by three different computers at the same conditions. The flow has a structural 2-cell, 3-cell or 4-cell at different Dean numbers and on different solutions, which leads to multiple non-uniform nanoparticle concentration distributions and multiple temperature fields. Multiple flow fields are symmetric in a low Dean number region and asymmetric in a high Dean number region, which leads to multiple symmetric (asymmetric) nanoparticle concentration distribution and temperature distribution fields, multiple symmetric (asymmetric) local Nusselt number and local friction factor along the outer wall at low De values (high De values), and finally lead to multiple mean friction factor and multiple mean Nusselt number. A significant enhancement of heat transfer (e.g. 23.79% at De of 335.2) can be achieved at the expense of a slight increase of flow friction (e.g. 6.84% at De of 335.2) in curved square duct through switching the solutions. This study could provide an explanation, from a new respect, for the inconsistent results of convective heat transfer of nanofluid in the literature. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:534 / 546
页数:13
相关论文
共 50 条
  • [31] Convective heat transfer of nanofluids with correlations
    Asirvatham, Lazarus Godson
    Raja, Balakrishnan
    Lal, Dhasan Mohan
    Wongwises, Somchai
    PARTICUOLOGY, 2011, 9 (06) : 626 - 631
  • [32] Mechanisms of convective heat transfer of nanofluids
    Wen, Dongsheng
    PROCEEDINGS OF THE MICRO/NANOSCALE HEAT TRANSFER INTERNATIONAL CONFERENCE 2008, PTS A AND B, 2008, : 591 - 598
  • [33] Effect of Temperature and Nanoparticle Concentration on Free Convective Heat Transfer of Nanofluids
    Cieslinski, Janusz T.
    Smolen, Slawomir
    Sawicka, Dorota
    ENERGIES, 2021, 14 (12)
  • [34] Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)
    V. Vasu
    K. Rama Krishna
    A. C. S. Kumar
    Pramana, 2007, 69 : 411 - 421
  • [35] Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)
    Vasu, V.
    Krishna, K. Rama
    Kumar, A. C. S.
    PRAMANA-JOURNAL OF PHYSICS, 2007, 69 (03): : 411 - 421
  • [36] The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat transfer
    Terekhov, V. I.
    Kalinina, S. V.
    Lemanov, V. V.
    THERMOPHYSICS AND AEROMECHANICS, 2010, 17 (02) : 157 - 171
  • [37] Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment
    Krishna, V. Murali
    Kumar, M. Sandeep
    MATERIALS TODAY-PROCEEDINGS, 2019, 17 : 295 - 302
  • [38] Mechanism of enhanced convective heat transfer coefficient of nanofluids
    Xie Hua-Qing
    Chen Li-Fei
    ACTA PHYSICA SINICA, 2009, 58 (04) : 2513 - 2517
  • [39] A critical review on convective heat transfer correlations of nanofluids
    Sarkar, Jahar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (06) : 3271 - 3277
  • [40] A comparison of mixed convective heat transfer performance of nanofluids cooled heat sink with circular perforated pin fin
    Bakhti, Fatima Zohra
    Si-Ameur, Mohamed
    APPLIED THERMAL ENGINEERING, 2019, 159